FMP Publications

Our publications are recorded in a searchable database since 2010, updates will be added regularly.

Year:  
All :: 2010, ... , 2014, 2015, 2016, 2017
Author:  
All :: (, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
Preferences: 
References per page: Show keywords Show abstracts
References
AKAP18:PKA-RIIalpha structure reveals crucial anchor points for recognition of regulatory subunits of PKA
Götz, F., Roske(*), Y., Schulz(*), M. S., Autenrieth(*), K., Bertinetti(*), D., Faelber(*), K., Zühlke(*), K., Kreuchwig, A., Kennedy(*), E. J., Krause, G., Daumke(*), O., Herberg(*), F. W., Heinemann(*), U.; Klussmann(*), E.
Biochem J, 473:1881-1894
(2016)

Tags: Structural Bioinformatics and Protein Design (Krause, G.), Anchored Signaling (Klussmann)

Abstract: A-kinase anchoring proteins (AKAPs) interact with the dimerization/docking (D/D) domains of regulatory subunits of the ubiquitous protein kinase A (PKA). AKAPs tether PKA to defined cellular compartments establishing distinct pools to increase the specificity of PKA signalling. Here, we elucidated the structure of an extended PKA-binding domain of AKAP18beta bound to the D/D domain of the regulatory RIIalpha subunits of PKA. We identified three hydrophilic anchor points in AKAP18beta outside the core PKA-binding domain, which mediate contacts with the D/D domain. Such anchor points are conserved within AKAPs that bind regulatory RII subunits of PKA. We derived a different set of anchor points in AKAPs binding regulatory RI subunits of PKA. In vitro and cell-based experiments confirm the relevance of these sites for the interaction of RII subunits with AKAP18 and of RI subunits with the RI-specific smAKAP. Thus we report a novel mechanism governing interactions of AKAPs with PKA. The sequence specificity of each AKAP around the anchor points and the requirement of these points for the tight binding of PKA allow the development of selective inhibitors to unequivocally ascribe cellular functions to the AKAP18-PKA and other AKAP-PKA interactions.

Dynamic Nuclear Polarization Enhanced MAS NMR Spectroscopy for Structural Analysis of HIV-1 Protein Assemblies
Gupta(*), R., Lu(*), M., Hou(*), G., Caporini(*), M. A., Rosay(*), M., Maas(*), W., Struppe(*), J., Suiter(*), C., Ahn(*), J., Byeon(*), I. J., Franks, W. T., Orwick-Rydmark, M., Bertarello(*), A., Oschkinat, H., Lesage(*), A., Pintacuda(*), G., Gronenborn(*), A. M.; Polenova(*), T.
J Phys Chem B, 120:329-339
(2016)

Tags: NMR-Supported Structural Biology (Oschkinat)

Abstract: Mature infectious HIV-1 virions contain conical capsids composed of CA protein, generated by the proteolytic cleavage cascade of the Gag polyprotein, termed maturation. The mechanism of capsid core formation through the maturation process remains poorly understood. We present DNP-enhanced MAS NMR studies of tubular assemblies of CA and Gag CA-SP1 maturation intermediate and report 20-64-fold sensitivity enhancements due to DNP at 14.1 T. These sensitivity enhancements enabled direct observation of spacer peptide 1 (SP1) resonances in CA-SP1 by dipolar-based correlation experiments, unequivocally indicating that the SP1 peptide is unstructured in assembled CA-SP1 at cryogenic temperatures, corroborating our earlier results. Furthermore, the dependence of DNP enhancements and spectral resolution on magnetic field strength (9.4-18.8 T) and temperature (109-180 K) was investigated. Our results suggest that DNP-based measurements could potentially provide residue-specific dynamics information by allowing for the extraction of the temperature dependence of the anisotropic tensorial or relaxation parameters. With DNP, we were able to detect multiple well-resolved isoleucine side-chain conformers; unique intermolecular correlations across two CA molecules; and functionally relevant conformationally disordered states such as the 14-residue SP1 peptide, none of which are visible at ambient temperatures. The detection of isolated conformers and intermolecular correlations can provide crucial constraints for structure determination of these assemblies. Overall, our results establish DNP-based MAS NMR spectroscopy as an excellent tool for the characterization of HIV-1 assemblies.

Intradomain Allosteric Network Modulates Calcium Affinity of the C-Type Lectin Receptor Langerin
Hanske(*), J., Aleksic(*), S., Ballaschk, M., Jurk(*), M., Shanina(*), E., Beerbaum, M., Schmieder, P., Keller(*), B. G.; Rademacher(*), C.
J Am Chem Soc, 138:12176-12186
(2016)

Tags: Solution NMR (Schmieder)

Abstract: Antigen uptake and processing by innate immune cells is crucial to initiate the immune response. Therein, the endocytic C-type lectin receptors serve as pattern recognition receptors, detecting pathogens by their glycan structures. Herein, we studied the carbohydrate recognition domain of Langerin, a C-type lectin receptor involved in the host defense against viruses such as HIV and influenza as well as bacteria and fungi. Using a combination of nuclear magnetic resonance and molecular dynamics simulations, we unraveled the molecular determinants underlying cargo capture and release encoded in the receptor architecture. Our findings revealed receptor dynamics over several time scales associated with binding and release of the essential cofactor Ca(2+) controlled by the coupled motions of two loops. Applying mutual information theory and site-directed mutagenesis, we identified an allosteric intradomain network that modulates the Ca(2+) affinity depending on the pH, thereby promoting fast ligand release.

Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness
Herrera(*), C. G., Cadavieco, M. C., Jego(*), S., Ponomarenko, A., Korotkova, T.; Adamantidis(*), A.
Nat Neurosci, 19:290-298
(2016)

Tags: Behavioral Neurodynamics (Korotkova/Ponomarenko)

Abstract: During non-rapid eye movement (NREM) sleep, synchronous synaptic activity in the thalamocortical network generates predominantly low-frequency oscillations (<4 Hz) that are modulated by inhibitory inputs from the thalamic reticular nucleus (TRN). Whether TRN cells integrate sleep-wake signals from subcortical circuits remains unclear. We found that GABA neurons from the lateral hypothalamus (LHGABA) exert a strong inhibitory control over TRN GABA neurons (TRNGABA). We found that optogenetic activation of this circuit recapitulated state-dependent changes of TRN neuron activity in behaving mice and induced rapid arousal during NREM, but not REM, sleep. During deep anesthesia, activation of this circuit induced sustained cortical arousal. In contrast, optogenetic silencing of LHGABA-TRNGABA transmission increased the duration of NREM sleep and amplitude of delta (1-4 Hz) oscillations. Collectively, these results demonstrate that TRN cells integrate subcortical arousal inputs selectively during NREM sleep and may participate in sleep intensity.

X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes
Hu(*), H., Haas(*), S. A., Chelly(*), J., Van Esch(*), H., Raynaud(*), M., de Brouwer(*), A. P., Weinert, S., Froyen(*), G., Frints(*), S. G., Laumonnier, F., Zemojtel(*), T., Love(*), M. I., Richard(*), H., Emde(*), A. K., Bienek(*), M., Jensen(*), C., Hambrock(*), M., Fischer(*), U., Langnick(*), C., Feldkamp(*), M., Wissink-Lindhout(*), W., Lebrun(*), N., Castelnau(*), L., Rucci(*), J., Montjean(*), R., Dorseuil(*), O., Billuart(*), P., Stuhlmann, T., Shaw(*), M., Corbett(*), M. A., Gardner(*), A., Willis-Owen(*), S., Tan(*), C., Friend(*), K. L., Belet(*), S., van Roozendaal(*), K. E., Jimenez-Pocquet(*), M., Moizard(*), M. P., Ronce(*), N., Sun(*), R., O'Keeffe(*), S., Chenna(*), R., van Bommel(*), A., Goke(*), J., Hackett(*), A., Field(*), M., Christie(*), L., Boyle(*), J., Haan(*), E., Nelson(*), J., Turner(*), G., Baynam(*), G., Gillessen-Kaesbach(*), G., Müller, U., Steinberger(*), D., Budny(*), B., Badura-Stronka(*), M., Latos-Bielenska(*), A., Ousager(*), L. B., Wieacker(*), P., Rodriguez Criado(*), G., Bondeson(*), M. L., Anneren(*), G., Dufke(*), A., Cohen(*), M., Van Maldergem(*), L., Vincent-Delorme(*), C., Echenne(*), B., Simon-Bouy(*), B., Kleefstra(*), T., Willemsen(*), M., Fryns(*), J. P., Devriendt(*), K., Ullmann(*), R., Vingron(*), M., Wrogemann(*), K., Wienker(*), T. F., Tzschach(*), A., van Bokhoven(*), H., Gecz(*), J., Jentsch, T. J., Chen(*), W., Ropers(*), H. H.; Kalscheuer(*), V. M.
Molecular psychiatry, 21:133-148
(2016)

Tags: Physiology and Pathology of Ion Transport (Jentsch

Abstract: X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4(-/-) mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.

In vivo evaluation of riboflavin receptor targeted fluorescent USPIO in mice with prostate cancer xenografts
Jayapaul, J., Arns(*), S., Bunker(*), M., Weiler(*), M., Rutherford(*), S., Comba(*), P.; Kiessling(*), F.
Nano Res, 9:1319-1333
(2016)

Tags: Molecular Imaging (Schröder)

Abstract: Riboflavin (Rf) receptors bind and translocate Rf and its phosphorylated forms (e.g. flavin mononucleotide, FMN) into cells where they mediate various cellular metabolic pathways. Previously, we showed that FMN-coated ultrasmall superparamagnetic iron oxide (FLUSPIO) nanoparticles are suitable for labeling metabolically active cancer and endothelial cells in vitro. In this study, we focused on the in vivo application of FLUSPIO using prostate cancer xenografts. Size, charge, and chemical composition of FLUSPIO were evaluated. We explored the in vitro specificity of FLUSPIO for its cellular receptors using magnetic resonance imaging (MRI) and Prussian blue staining. Competitive binding experiments were performed in vivo by injecting free FMN in excess. Bio-distribution of FLUSPIO was determined by estimating iron content in organs and tumors using a colorimetric assay. AFM analysis and zeta potential measurements revealed a particulate morphology approximately 20-40 nm in size and a negative zeta potential (-24.23 +/- 0.15 mV) in water. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry data confirmed FMN present on the USPIO nanoparticle surface. FLUSPIO uptake in prostate cancer cells and human umbilical vein endothelial cells was significantly higher than that of control USPIO, while addition of excess of free FMN reduced accumulation. Similarly, in vivo MRI and histology showed specific FLUSPIO uptake by prostate cancer cells, tumor endothelial cells, and tumor-associated macrophages. Besides prominent tumor accumulation, FLUSPIO accumulated in the liver, spleen, lung, and skin. Hence, our data strengthen our hypothesis that targeting riboflavin receptors is an efficient approach to accumulate nanomedicines in tumors opening perspectives for the development of diagnostic and therapeutic systems. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available for this article at 10.1007/s12274-016-1028-7 and is accessible for authorized users.

Type II PI4-kinases control Weibel-Palade body biogenesis and von Willebrand factor structure in human endothelial cells
Lopes da Silva(*), M., O'Connor(*), M. N., Kriston-Vizi(*), J., White(*), I. J., Al-Shawi(*), R., Simons(*), J. P., Mössinger, J., Haucke, V.; Cutler(*), D. F.
J Cell Sci, 129:2096-2105
(2016)

Tags: Molecular Pharmacology and Cell Biology (Haucke)

Abstract: Weibel-Palade bodies (WPBs) are endothelial storage organelles that mediate the release of molecules involved in thrombosis, inflammation and angiogenesis, including the pro-thrombotic glycoprotein von Willebrand factor (VWF). Although many protein components required for WPB formation and function have been identified, the role of lipids is almost unknown. We examined two key phosphatidylinositol kinases that control phosphatidylinositol 4-phosphate levels at the trans-Golgi network, the site of WPB biogenesis. RNA interference of the type II phosphatidylinositol 4-kinases PI4KIIalpha and PI4KIIbeta in primary human endothelial cells leads to formation of an increased proportion of short WPB with perturbed packing of VWF, as exemplified by increased exposure of antibody-binding sites. When stimulated with histamine, these cells release normal levels of VWF yet, under flow, form very few platelet-catching VWF strings. In PI4KIIalpha-deficient mice, immuno-microscopy revealed that VWF packaging is also perturbed and these mice exhibit increased blood loss after tail cut compared to controls. This is the first demonstration that lipid kinases can control the biosynthesis of VWF and the formation of WPBs that are capable of full haemostatic function.

Sulindac Sulfide Induces the Formation of Large Oligomeric Aggregates of the Alzheimer's Disease Amyloid-beta Peptide Which Exhibit Reduced Neurotoxicity
Prade(*), E., Barucker(*), C., Sarkar(*), R., Althoff-Ospelt(*), G., Lopez del Amo, J. M., Hossain(*), S., Zhong(*), Y., Multhaup(*), G.; Reif(*), B.
Biochemistry, 55:1839-1849
(2016)

Tags: Solid-State NMR Spectroscopy (Reif)

Abstract: Alzheimer's disease is characterized by deposition of the amyloid beta-peptide (Abeta) in brain tissue of affected individuals. In recent years, many potential lead structures have been suggested that can potentially be used for diagnosis and therapy. However, the mode of action of these compounds is so far not understood. Among these small molecules, the nonsteroidal anti-inflammatory drug (NSAID) sulindac sulfide received a lot of attention. In this manuscript, we characterize the interaction between the monomeric Abeta peptide and the NSAID sulindac sulfide. We find that sulindac sulfide efficiently depletes the pool of toxic oligomers by enhancing the rate of fibril formation. In vitro, sulindac sulfide forms colloidal particles which catalyze the formation of fibrils. Aggregation is immediate, presumably by perturbing the supersaturated Abeta solution. We find that sulindac sulfide induced Abeta aggregates are structurally homogeneous. The C-terminal part of the peptide adopts a beta-sheet structure, whereas the N-terminus is disordered. The salt bridge between D23 and K28 is present, similar as in wild type fibril structures. (13)C-(19)F transferred echo double resonance experiments suggest that sulindac sulfide colocalizes with the Abeta peptide in the aggregate.

Glycoprotein B of equine herpesvirus type 1 has two recognition sites for subtilisin-like proteases that are cleaved by furin
Spiesschaert(*), B., Stephanowitz, H., Krause, E., Osterrieder(*), N.; Azab(*), W.
J Gen Virol, 97:1218-1228
(2016)

Tags: Mass Spectrometry (Krause, E.)

Abstract: Glycoprotein B (gB) of equine herpesvirus type 1 (EHV-1) is predicted to be cleaved by furin in a fashion similar to that of related herpesviruses. To investigate the contribution of furin-mediated gB cleavage to EHV-1 growth, canonical furin cleavage sites were mutated. Western blot analysis of mutated EHV-1 gB showed that it was cleaved at two positions, 518RRRR521 and 544RLHK547, and that the 28 aa between the two sites were removed after cleavage. Treating infected cells with either convertase or furin inhibitors reduced gB cleavage efficiency. Further, removal of the first furin recognition motif did not affect in vitro growth of EHV-1, while mutation of the second motif greatly affected virus growth. In addition, a second possible signal peptide cleavage site was identified for EHV-1 gB between residues 98 and 99, which was 13 aa downstream of that previously identified.

Page:  
Previous | 1, 2 | Next
Export as:
BibTeX, XML

Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP)
Campus Berlin-Buch
Robert-Roessle-Str. 10
13125 Berlin, Germany
+4930 94793 - 100 
+4930 94793 - 109 (Fax)
info(at)fmp-berlin.de

Like many sites, we use cookies to optimize the user's browsing experience. Data Protection OK