FMP Publications

Our publications are recorded in a searchable database since 2010, updates will be added regularly.

All :: 2011, ... , 2013, 2014, 2015, 2016
All :: (, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
All :: Babikir(*), ... , Bimmler(*), Binolfi, Birchmeier(*), ... , Byeon(*) 
References per page: Show keywords Show abstracts
Intracellular repair of oxidation-damaged alpha-synuclein fails to target C-terminal modification sites
Binolfi, A., Limatola, A., Verzini, S., Kosten, J., Theillet, F. X., Rose, H. M., Bekei, B., Stuiver, M., van Rossum, M.; Selenko, P.
Nat Commun, 7:10251

Tags: In-Cell NMR (Selenko)

Abstract: Cellular oxidative stress serves as a common denominator in many neurodegenerative disorders, including Parkinson's disease. Here we use in-cell NMR spectroscopy to study the fate of the oxidation-damaged Parkinson's disease protein alpha-synuclein (alpha-Syn) in non-neuronal and neuronal mammalian cells. Specifically, we deliver methionine-oxidized, isotope-enriched alpha-Syn into cultured cells and follow intracellular protein repair by endogenous enzymes at atomic resolution. We show that N-terminal alpha-Syn methionines Met1 and Met5 are processed in a stepwise manner, with Met5 being exclusively repaired before Met1. By contrast, C-terminal methionines Met116 and Met127 remain oxidized and are not targeted by cellular enzymes. In turn, persisting oxidative damage in the C-terminus of alpha-Syn diminishes phosphorylation of Tyr125 by Fyn kinase, which ablates the necessary priming event for Ser129 modification by CK1. These results establish that oxidative stress can lead to the accumulation of chemically and functionally altered alpha-Syn in cells.

Structural disorder of monomeric alpha-synuclein persists in mammalian cells
Theillet, F. X., Binolfi, A., Bekei, B., Martorana(*), A., Rose, H. M., Stuiver, M., Verzini, S., Lorenz, D., van Rossum, M., Goldfarb(*), D.; Selenko, P.
Nature, 530:45-50

Tags: In-Cell NMR (Selenko), Cellular Imaging (Wiesner)

Abstract: Intracellular aggregation of the human amyloid protein alpha-synuclein is causally linked to Parkinson's disease. While the isolated protein is intrinsically disordered, its native structure in mammalian cells is not known. Here we use nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy to derive atomic-resolution insights into the structure and dynamics of alpha-synuclein in different mammalian cell types. We show that the disordered nature of monomeric alpha-synuclein is stably preserved in non-neuronal and neuronal cells. Under physiological cell conditions, alpha-synuclein is amino-terminally acetylated and adopts conformations that are more compact than when in buffer, with residues of the aggregation-prone non-amyloid-beta component (NAC) region shielded from exposure to the cytoplasm, which presumably counteracts spontaneous aggregation. These results establish that different types of crowded intracellular environments do not inherently promote alpha-synuclein oligomerization and, more generally, that intrinsic structural disorder is sustainable in mammalian cells.

Export as:

Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP)
Campus Berlin-Buch
Robert-Roessle-Str. 10
13125 Berlin, Germany
+4930 94793 - 100 
+4930 94793 - 109 (Fax)

Like many sites, we use cookies to optimize the user's browsing experience. Data Protection OK