FMP Publications

Our publications are recorded in a searchable database since 2010, updates will be added regularly.

Year:  
All :: 2010, ... , 2014, 2015, 2016, 2017
Author:  
All :: (, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
All :: Haag(*), ... , Hennies, Hennig(*), Henning(*), ... , Hyvl(*) 
Preferences: 
References per page: Show keywords Show abstracts
References
1H, 13C and 15N backbone resonance assignment of the intrinsically disordered region of the nuclear envelope protein emerin
Samson(*), C., Herrada(*), I., Celli(*), F., Theillet, F. X.; Zinn-Justin(*), S.
Biomol NMR Assign, 10:179-182
(2016)

Tags: In-Cell NMR (Selenko)

Abstract: Human emerin is an inner nuclear membrane protein involved in the response of the nucleus to mechanical stress. It contributes to the physical connection between the cytoskeleton and the nucleoskeleton. It is also involved in chromatin organization. Its N-terminal region is nucleoplasmic and comprises a globular LEM domain from residue 1 to residue 43. The three-dimensional structure of this LEM domain in complex with the chromatin BAF protein was solved from NMR data. Apart from the LEM domain, the nucleoplasmic region of emerin, from residue 44 to residue 221, is predicted to be intrinsically disordered. Mutations in this region impair binding to several emerin partners as lamin A, actin or HDAC3. However the molecular details of these recognition defects are unknown. Here we report (1)H, (15)N, (13)CO, (13)Calpha and (13)Cbeta NMR chemical shift assignments of the emerin fragment from residue 67 to residue 170, which is sufficient for nuclear localization and involved in lamin A binding. Chemical shift analysis confirms that this fragment is intrinsically disordered in 0 and 8 M urea.

Chemical fragment arrays for rapid druggability assessment
Aretz(*), J., Kondoh(*), Y., Honda(*), K., Anumala, U. R., Nazare, M., Watanabe(*), N., Osada(*), H.; Rademacher(*), C.
Chem Commun (Camb), 52:9067-9070
(2016)

Tags: Medicinal Chemistry (Nazare)

Abstract: Incorporation of early druggability assessment in the drug discovery process provides a means to prioritize target proteins for high-throughput screening. We present chemical fragment arrays as a method that is capable of determining the druggability of a given target with low protein and compound consumption, enabling rapid decision making during early phases of drug discovery.

Active zone scaffolds differentially accumulate Unc13 isoforms to tune Ca(2+) channel-vesicle coupling
Böhme(*), M. A., Beis(*), C., Reddy-Alla(*), S., Reynolds(*), E., Mampell(*), M. M., Grasskamp, A. T., Lutzkendorf(*), J., Bergeron(*), D. D., Driller(*), J. H., Babikir(*), H., Göttfert(*), F., Robinson(*), I. M., O'Kane(*), C. J., Hell(*), S. W., Wahl(*), M. C., Stelzl(*), U., Loll(*), B., Walter, A. M.; Sigrist(*), S. J.
Nat Neurosci, 19:1311-1320
(2016)

Tags: Molecular and Theoretical Neuroscience (Walter)

Abstract: Brain function relies on fast and precisely timed synaptic vesicle (SV) release at active zones (AZs). Efficacy of SV release depends on distance from SV to Ca(2+) channel, but molecular mechanisms controlling this are unknown. Here we found that distances can be defined by targeting two unc-13 (Unc13) isoforms to presynaptic AZ subdomains. Super-resolution and intravital imaging of developing Drosophila melanogaster glutamatergic synapses revealed that the Unc13B isoform was recruited to nascent AZs by the scaffolding proteins Syd-1 and Liprin-alpha, and Unc13A was positioned by Bruchpilot and Rim-binding protein complexes at maturing AZs. Unc13B localized 120 nm away from Ca(2+) channels, whereas Unc13A localized only 70 nm away and was responsible for docking SVs at this distance. Unc13A(null) mutants suffered from inefficient, delayed and EGTA-supersensitive release. Mathematical modeling suggested that synapses normally operate via two independent release pathways differentially positioned by either isoform. We identified isoform-specific Unc13-AZ scaffold interactions regulating SV-Ca(2+)-channel topology whose developmental tightening optimizes synaptic transmission.

Elm defence against herbivores and pathogens: morphological, chemical and molecular regulation aspects
Buchel(*), K., Fenning(*), T., Gershenzon(*), J., Hilker(*), M.; Meiners, T.
Phytochem Rev, 15:961-983
(2016)

Tags: Department Chemical Biology/ EU-OPENSCREEN

Abstract: Elms (Ulmus spp.) have long been appreciated for their environmental tolerance, landscape and ornamental value, and the quality of their wood. Although elm trees are extremely hardy against abiotic stresses such as wind and pollution, they are susceptible to attacks of biotic stressors. Over 100 phytopathogens and invertebrate pests are associated with elms: fungi, bacteria and insects like beetles and moths, and to a lesser extent aphids, mites, viruses and nematodes. While the biology of the pathogen and insect vector of the Dutch elm disease has been intensively studied, less attention has been paid so far to the defence mechanisms of elms to other biotic stressors. This review highlights knowledge of direct and indirect elm defences against biotic stressors focusing on morphological, chemical and gene regulation aspects. First, we report how morphological defence mechanisms via barrier formation and vessel occlusion prevent colonisation and spread of wood- and bark-inhabiting fungi and bacteria. Second, we outline how secondary metabolites such as terpenoids (volatile terpenoids, mansonones and triterpenoids) and phenolics (lignans, coumarins, flavonoids) in leaves and bark are involved in constitutive and induced chemical defence mechanisms of elms. Third, we address knowledge on how the molecular regulation of elm defence is orchestrated through the interaction of a huge variety of stress- and defence-related genes. We conclude by pointing to the gaps of knowledge on the chemical and molecular mechanisms of elm defence against pest insects and diseases. An in-depth understanding of defence mechanisms of elms will support the development of sustainable integrated management of pests and diseases attacking elms.

C-type natriuretic peptide and natriuretic peptide receptor B signalling inhibits cardiac sympathetic neurotransmission and autonomic function
Buttgereit(*), J., Shanks(*), J., Li(*), D., Hao(*), G., Athwal(*), A., Langenickel(*), T. H., Wright(*), H., da Costa Goncalves, A. C., Monti(*), J., Plehm(*), R., Popova(*), E., Qadri(*), F., Lapidus(*), I., Ryan(*), B., Ozcelik(*), C., Paterson(*), D. J., Bader(*), M.; Herring(*), N.
Cardiovasc Res, 112:637-644
(2016)

Tags: Anchored Signaling (Klussmann)

Abstract: AIMS: B-type natriuretic peptide (BNP)-natriuretic peptide receptor A (NPR-A) receptor signalling inhibits cardiac sympathetic neurotransmission, although C-type natriuretic peptide (CNP) is the predominant neuropeptide of the nervous system with expression in the heart and vasculature. We hypothesized that CNP acts similarly to BNP, and that transgenic rats (TGRs) with neuron-specific overexpression of a dominant negative NPR-B receptor would develop heightened sympathetic drive. METHODS AND RESULTS: Mean arterial pressure and heart rate (HR) were significantly (P < 0.05) elevated in freely moving TGRs (n = 9) compared with Sprague Dawley (SD) controls (n = 10). TGR had impaired left ventricular systolic function and spectral analysis of HR variability suggested a shift towards sympathoexcitation. Immunohistochemistry demonstrated co-staining of NPR-B with tyrosine hydroxylase in stellate ganglia neurons. In SD rats, CNP (250 nM, n = 8) significantly reduced the tachycardia during right stellate ganglion stimulation (1-7 Hz) in vitro whereas the response to bath-applied norepinephrine (NE, 1 muM, n = 6) remained intact. CNP (250 nM, n = 8) significantly reduced the release of 3H-NE in isolated atria and this was prevented by the NPR-B antagonist P19 (250 nM, n = 6). The neuronal Ca2+ current (n = 6) and intracellular Ca2+ transient (n = 9, using fura-2AM) were also reduced by CNP in isolated stellate neurons. Treatment of the TGR (n = 9) with the sympatholytic clonidine (125 microg/kg per day) significantly reduced mean arterial pressure and HR to levels observed in the SD (n = 9). CONCLUSION: C-type natriuretic peptide reduces cardiac sympathetic neurotransmission via a reduction in neuronal calcium signalling and NE release through the NPR-B receptor. Situations impairing CNP-NPR-B signalling lead to hypertension, tachycardia, and impaired left ventricular systolic function secondary to sympatho-excitation.

Automatic (1)H-NMR Screening of Fatty Acid Composition in Edible Oils
Castejon(*), D., Fricke, P., Cambero(*), M. I.; Herrera(*), A.
Nutrients, 8:93
(2016)

Tags: Molecular Biophysics (Lange, A.)

Abstract: In this work, we introduce an NMR-based screening method for the fatty acid composition analysis of edible oils. We describe the evaluation and optimization needed for the automated analysis of vegetable oils by low-field NMR to obtain the fatty acid composition (FAC). To achieve this, two scripts, which automatically analyze and interpret the spectral data, were developed. The objective of this work was to drive forward the automated analysis of the FAC by NMR. Due to the fact that this protocol can be carried out at low field and that the complete process from sample preparation to printing the report only takes about 3 min, this approach is promising to become a fundamental technique for high-throughput screening. To demonstrate the applicability of this method, the fatty acid composition of extra virgin olive oils from various Spanish olive varieties (arbequina, cornicabra, hojiblanca, manzanilla, and picual) was determined by (1)H-NMR spectroscopy according to this protocol.

Bimodal antagonism of PKA signalling by ARHGAP36
Eccles(*), R. L., Czajkowski(*), M. T., Barth(*), C., Müller(*), P. M., McShane(*), E., Grunwald(*), S., Beaudette(*), P., Mecklenburg(*), N., Volkmer, R., Zühlke(*), K., Dittmar(*), G., Selbach(*), M., Hammes(*), A., Daumke(*), O., Klussmann(*), E., Urbe(*), S.; Rocks(*), O.
Nat Commun, 7:12963
(2016)

Tags: Peptide Synthesis (Hackenberger/Volkmer)

Abstract: Protein kinase A is a key mediator of cAMP signalling downstream of G-protein-coupled receptors, a signalling pathway conserved in all eukaryotes. cAMP binding to the regulatory subunits (PKAR) relieves their inhibition of the catalytic subunits (PKAC). Here we report that ARHGAP36 combines two distinct inhibitory mechanisms to antagonise PKA signalling. First, it blocks PKAC activity via a pseudosubstrate motif, akin to the mechanism employed by the protein kinase inhibitor proteins. Second, it targets PKAC for rapid ubiquitin-mediated lysosomal degradation, a pathway usually reserved for transmembrane receptors. ARHGAP36 thus dampens the sensitivity of cells to cAMP. We show that PKA inhibition by ARHGAP36 promotes derepression of the Hedgehog signalling pathway, thereby providing a simple rationale for the upregulation of ARHGAP36 in medulloblastoma. Our work reveals a new layer of PKA regulation that may play an important role in development and disease.

Dynamic Nuclear Polarization Enhanced MAS NMR Spectroscopy for Structural Analysis of HIV-1 Protein Assemblies
Gupta(*), R., Lu(*), M., Hou(*), G., Caporini(*), M. A., Rosay(*), M., Maas(*), W., Struppe(*), J., Suiter(*), C., Ahn(*), J., Byeon(*), I. J., Franks, W. T., Orwick-Rydmark, M., Bertarello(*), A., Oschkinat, H., Lesage(*), A., Pintacuda(*), G., Gronenborn(*), A. M.; Polenova(*), T.
J Phys Chem B, 120:329-339
(2016)

Tags: NMR-Supported Structural Biology (Oschkinat)

Abstract: Mature infectious HIV-1 virions contain conical capsids composed of CA protein, generated by the proteolytic cleavage cascade of the Gag polyprotein, termed maturation. The mechanism of capsid core formation through the maturation process remains poorly understood. We present DNP-enhanced MAS NMR studies of tubular assemblies of CA and Gag CA-SP1 maturation intermediate and report 20-64-fold sensitivity enhancements due to DNP at 14.1 T. These sensitivity enhancements enabled direct observation of spacer peptide 1 (SP1) resonances in CA-SP1 by dipolar-based correlation experiments, unequivocally indicating that the SP1 peptide is unstructured in assembled CA-SP1 at cryogenic temperatures, corroborating our earlier results. Furthermore, the dependence of DNP enhancements and spectral resolution on magnetic field strength (9.4-18.8 T) and temperature (109-180 K) was investigated. Our results suggest that DNP-based measurements could potentially provide residue-specific dynamics information by allowing for the extraction of the temperature dependence of the anisotropic tensorial or relaxation parameters. With DNP, we were able to detect multiple well-resolved isoleucine side-chain conformers; unique intermolecular correlations across two CA molecules; and functionally relevant conformationally disordered states such as the 14-residue SP1 peptide, none of which are visible at ambient temperatures. The detection of isolated conformers and intermolecular correlations can provide crucial constraints for structure determination of these assemblies. Overall, our results establish DNP-based MAS NMR spectroscopy as an excellent tool for the characterization of HIV-1 assemblies.

Cellular Cations Control Conformational Switching of Inositol Pyrophosphate Analogues
Hager(*), A., Wu(*), M., Wang(*), H., Brown, N. W., Jr., Shears(*), S. B., Veiga(*), N.; Fiedler, D.
Chemistry, 22:12406-12414
(2016)

Tags: Chemical Biology I (Fiedler)

Abstract: The inositol pyrophosphate messengers (PP-InsPs) are emerging as an important class of cellular regulators. These molecules have been linked to numerous biological processes, including insulin secretion and cancer cell migration, but how they trigger such a wide range of cellular responses has remained unanswered in many cases. Here, we show that the PP-InsPs exhibit complex speciation behaviour and propose that a unique conformational switching mechanism could contribute to their multifunctional effects. We synthesised non-hydrolysable bisphosphonate analogues and crystallised the analogues in complex with mammalian PPIP5K2 kinase. Subsequently, the bisphosphonate analogues were used to investigate the protonation sequence, metal-coordination properties, and conformation in solution. Remarkably, the presence of potassium and magnesium ions enabled the analogues to adopt two different conformations near physiological pH. Understanding how the intrinsic chemical properties of the PP-InsPs can contribute to their complex signalling outputs will be essential to elucidate their regulatory functions.

Intradomain Allosteric Network Modulates Calcium Affinity of the C-Type Lectin Receptor Langerin
Hanske(*), J., Aleksic(*), S., Ballaschk, M., Jurk(*), M., Shanina(*), E., Beerbaum, M., Schmieder, P., Keller(*), B. G.; Rademacher(*), C.
J Am Chem Soc, 138:12176-12186
(2016)

Tags: Solution NMR (Schmieder)

Abstract: Antigen uptake and processing by innate immune cells is crucial to initiate the immune response. Therein, the endocytic C-type lectin receptors serve as pattern recognition receptors, detecting pathogens by their glycan structures. Herein, we studied the carbohydrate recognition domain of Langerin, a C-type lectin receptor involved in the host defense against viruses such as HIV and influenza as well as bacteria and fungi. Using a combination of nuclear magnetic resonance and molecular dynamics simulations, we unraveled the molecular determinants underlying cargo capture and release encoded in the receptor architecture. Our findings revealed receptor dynamics over several time scales associated with binding and release of the essential cofactor Ca(2+) controlled by the coupled motions of two loops. Applying mutual information theory and site-directed mutagenesis, we identified an allosteric intradomain network that modulates the Ca(2+) affinity depending on the pH, thereby promoting fast ligand release.

Page:  
Previous | 1, 2, 3, 4, 5 | Next
Export as:
BibTeX, XML

Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP)
Campus Berlin-Buch
Robert-Roessle-Str. 10
13125 Berlin, Germany
+4930 94793 - 100 
+4930 94793 - 109 (Fax)
info(at)fmp-berlin.de

Like many sites, we use cookies to optimize the user's browsing experience. Data Protection OK