FMP Publications

Our publications are recorded in a searchable database since 2010, updates will be added regularly.

Year:  
All :: 2010, ... , 2014, 2015, 2016, 2017
Author:  
All :: (, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
Preferences: 
References per page: Show keywords Show abstracts
References
Identification of Novel Nuclear Factor of Activated T Cell (NFAT)-associated Proteins in T Cells
Gabriel(*), C. H., Gross(*), F., Karl(*), M., Stephanowitz, H., Hennig(*), A. F., Weber(*), M., Gryzik(*), S., Bachmann(*), I., Hecklau(*), K., Wienands(*), J., Schuchhardt(*), J., Herzel(*), H., Radbruch(*), A., Krause, E.; Baumgrass(*), R.
J Biol Chem, 291:24172-24187
(2016)

Tags: Mass Spectrometry (Krause, E.)

Abstract: Transcription factors of the nuclear factor of activated T cell (NFAT) family are essential for antigen-specific T cell activation and differentiation. Their cooperative DNA binding with other transcription factors, such as AP1 proteins (FOS, JUN, and JUNB), FOXP3, IRFs, and EGR1, dictates the gene regulatory action of NFATs. To identify as yet unknown interaction partners of NFAT, we purified biotin-tagged NFATc1/alphaA, NFATc1/betaC, and NFATc2/C protein complexes and analyzed their components by stable isotope labeling by amino acids in cell culture-based mass spectrometry. We revealed more than 170 NFAT-associated proteins, half of which are involved in transcriptional regulation. Among them are many hitherto unknown interaction partners of NFATc1 and NFATc2 in T cells, such as Raptor, CHEK1, CREB1, RUNX1, SATB1, Ikaros, and Helios. The association of NFATc2 with several other transcription factors is DNA-dependent, indicating cooperative DNA binding. Moreover, our computational analysis discovered that binding motifs for RUNX and CREB1 are found preferentially in the direct vicinity of NFAT-binding motifs and in a distinct orientation to them. Furthermore, we provide evidence that mTOR and CHEK1 kinase activity influence NFAT's transcriptional potency. Finally, our dataset of NFAT-associated proteins provides a good basis to further study NFAT's diverse functions and how these are modulated due to the interplay of multiple interaction partners.

SORLA regulates calpain-dependent degradation of synapsin
Hartl(*), D., Nebrich(*), G., Klein(*), O., Stephanowitz, H., Krause, E.; Rohe(*), M.
Alzheimers Dement, 12:952-963
(2016)

Tags: Mass Spectrometry (Krause, E.)

Abstract: INTRODUCTION: Sorting-related receptor with A-type repeats (SORLA) is an intracellular sorting receptor in neurons and a major risk factor for Alzheimer disease. METHODS: Here, we performed global proteome analyses in the brain of SORLA-deficient mice followed by biochemical and histopathologic studies to identify novel neuronal pathways affected by receptor dysfunction. RESULTS: We demonstrate that the lack of SORLA results in accumulation of phosphorylated synapsins in cortex and hippocampus. We propose an underlying molecular mechanism by demonstrating that SORLA interacts with phosphorylated synapsins through 14-3-3 adaptor proteins to deliver synapsins to calpain-mediated proteolytic degradation. DISCUSSION: Our results suggest a novel function for SORLA which is in control of synapsin degradation, potentially impacting on synaptic vesicle endocytosis and/or exocytosis.

A Complex of Htm1 and the Oxidoreductase Pdi1 Accelerates Degradation of Misfolded Glycoproteins
Pfeiffer(*), A., Stephanowitz, H., Krause, E., Volkwein(*), C., Hirsch(*), C., Jarosch(*), E.; Sommer(*), T.
J Biol Chem, 291:12195-12207
(2016)

Tags: Mass Spectrometry (Krause, E.)

Abstract: A quality control system in the endoplasmic reticulum (ER) efficiently discriminates polypeptides that are in the process of productive folding from conformers that are trapped in an aberrant state. Only the latter are transported into the cytoplasm and degraded in a process termed ER-associated protein degradation (ERAD). In the ER, an enzymatic cascade generates a specific N-glycan structure of seven mannosyl and two N-acetylglucosamine residues (Man7GlcNAc2) on misfolded glycoproteins to facilitate their disposal. We show that a complex encompassing the yeast lectin-like protein Htm1 and the oxidoreductase Pdi1 converts Man8GlcNAc2 on glycoproteins into the Man7GlcNAc2 signal. In vitro the Htm1-Pdi1 complex processes both unfolded and native proteins albeit with a preference for the former. In vivo, elevated expression of HTM1 causes glycan trimming on misfolded and folded proteins, but only degradation of the non-native species is accelerated. Thus, modification with a Man7GlcNAc2 structure does not inevitably commit a protein for ER-associated protein degradation. The function of Htm1 in ERAD relies on its association with Pdi1, which appears to regulate the access to substrates. Our data support a model in which the balanced activities of Pdi1 and Htm1 are crucial determinants for the efficient removal of misfolded secretory glycoproteins.

Glycoprotein B of equine herpesvirus type 1 has two recognition sites for subtilisin-like proteases that are cleaved by furin
Spiesschaert(*), B., Stephanowitz, H., Krause, E., Osterrieder(*), N.; Azab(*), W.
J Gen Virol, 97:1218-1228
(2016)

Tags: Mass Spectrometry (Krause, E.)

Abstract: Glycoprotein B (gB) of equine herpesvirus type 1 (EHV-1) is predicted to be cleaved by furin in a fashion similar to that of related herpesviruses. To investigate the contribution of furin-mediated gB cleavage to EHV-1 growth, canonical furin cleavage sites were mutated. Western blot analysis of mutated EHV-1 gB showed that it was cleaved at two positions, 518RRRR521 and 544RLHK547, and that the 28 aa between the two sites were removed after cleavage. Treating infected cells with either convertase or furin inhibitors reduced gB cleavage efficiency. Further, removal of the first furin recognition motif did not affect in vitro growth of EHV-1, while mutation of the second motif greatly affected virus growth. In addition, a second possible signal peptide cleavage site was identified for EHV-1 gB between residues 98 and 99, which was 13 aa downstream of that previously identified.

The progressive ankylosis protein ANK facilitates clathrin- and adaptor-mediated membrane traffic at the trans-Golgi network-to-endosome interface
Seifert(*), W., Posor, Y., Schu(*), P., Stenbeck(*), G., Mundlos(*), S., Klaassen(*), S., Nürnberg(*), P., Haucke, V., Kornak(*), U.; Kühnisch(*), J.
Hum Mol Genet, 25:3836-3848
(2016)

Tags: Molecular Pharmacology and Cell Biology (Haucke)

Abstract: Dominant or recessive mutations in the progressive ankylosis gene ANKH have been linked to familial chondrocalcinosis (CCAL2), craniometaphyseal dysplasia (CMD), mental retardation, deafness and ankylosis syndrome (MRDA). The function of the encoded membrane protein ANK in cellular compartments other than the plasma membrane is unknown. Here, we show that ANK localizes to the trans-Golgi network (TGN), clathrin-coated vesicles and the plasma membrane. ANK functionally interacts with clathrin and clathrin associated adaptor protein (AP) complexes as loss of either protein causes ANK dispersion from the TGN to cytoplasmic endosome-like puncta. Consistent with its subcellular localization, loss of ANK results in reduced formation of tubular membrane carriers from the TGN, perinuclear accumulation of early endosomes and impaired transferrin endocytosis. Our data indicate that clathrin/AP-mediated cycling of ANK between the TGN, endosomes, and the cell surface regulates membrane traffic at the TGN/endosomal interface. These findings suggest that dysfunction of Golgi-endosomal membrane traffic may contribute to ANKH-associated pathologies.

Bimodal antagonism of PKA signalling by ARHGAP36
Eccles(*), R. L., Czajkowski(*), M. T., Barth(*), C., Müller(*), P. M., McShane(*), E., Grunwald(*), S., Beaudette(*), P., Mecklenburg(*), N., Volkmer, R., Zühlke(*), K., Dittmar(*), G., Selbach(*), M., Hammes(*), A., Daumke(*), O., Klussmann(*), E., Urbe(*), S.; Rocks(*), O.
Nat Commun, 7:12963
(2016)

Tags: Peptide Synthesis (Hackenberger/Volkmer)

Abstract: Protein kinase A is a key mediator of cAMP signalling downstream of G-protein-coupled receptors, a signalling pathway conserved in all eukaryotes. cAMP binding to the regulatory subunits (PKAR) relieves their inhibition of the catalytic subunits (PKAC). Here we report that ARHGAP36 combines two distinct inhibitory mechanisms to antagonise PKA signalling. First, it blocks PKAC activity via a pseudosubstrate motif, akin to the mechanism employed by the protein kinase inhibitor proteins. Second, it targets PKAC for rapid ubiquitin-mediated lysosomal degradation, a pathway usually reserved for transmembrane receptors. ARHGAP36 thus dampens the sensitivity of cells to cAMP. We show that PKA inhibition by ARHGAP36 promotes derepression of the Hedgehog signalling pathway, thereby providing a simple rationale for the upregulation of ARHGAP36 in medulloblastoma. Our work reveals a new layer of PKA regulation that may play an important role in development and disease.

Differentially Isotope-Labeled Nucleosomes To Study Asymmetric Histone Modification Crosstalk by Time-Resolved NMR Spectroscopy
Liokatis, S., Klingberg, R., Tan(*), S.; Schwarzer(*), D.
Angew Chem Int Ed Engl, 55:8262-8265
(2016)

Tags: In-Cell NMR (Selenko), Protein Chemistry (Schwarzer)

Abstract: Post-translational modifications (PTMs) of histones regulate chromatin structure and function. Because nucleosomes contain two copies each of the four core histones, the establishment of different PTMs on individual "sister" histones in the same nucleosomal context, that is, asymmetric histone PTMs, are difficult to analyze. Here, we generated differentially isotope-labeled nucleosomes to study asymmetric histone modification crosstalk by time-resolved NMR spectroscopy. Specifically, we present mechanistic insights into nucleosomal histone H3 modification reactions in cis and in trans, that is, within individual H3 copies or between them. We validated our approach by using the H3S10phK14ac crosstalk mechanism, which is mediated by the Gcn5 acetyltransferase. Moreover, phosphorylation assays on methylated substrates showed that, under certain conditions, Haspin kinase is able to produce nucleosomes decorated asymmetrically with two distinct types of PTMs.

Intracellular repair of oxidation-damaged alpha-synuclein fails to target C-terminal modification sites
Binolfi, A., Limatola, A., Verzini, S., Kosten, J., Theillet, F. X., Rose, H. M., Bekei, B., Stuiver, M., van Rossum, M.; Selenko, P.
Nat Commun, 7:10251
(2016)

Tags: In-Cell NMR (Selenko)

Abstract: Cellular oxidative stress serves as a common denominator in many neurodegenerative disorders, including Parkinson's disease. Here we use in-cell NMR spectroscopy to study the fate of the oxidation-damaged Parkinson's disease protein alpha-synuclein (alpha-Syn) in non-neuronal and neuronal mammalian cells. Specifically, we deliver methionine-oxidized, isotope-enriched alpha-Syn into cultured cells and follow intracellular protein repair by endogenous enzymes at atomic resolution. We show that N-terminal alpha-Syn methionines Met1 and Met5 are processed in a stepwise manner, with Met5 being exclusively repaired before Met1. By contrast, C-terminal methionines Met116 and Met127 remain oxidized and are not targeted by cellular enzymes. In turn, persisting oxidative damage in the C-terminus of alpha-Syn diminishes phosphorylation of Tyr125 by Fyn kinase, which ablates the necessary priming event for Ser129 modification by CK1. These results establish that oxidative stress can lead to the accumulation of chemically and functionally altered alpha-Syn in cells.

Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness
Herrera(*), C. G., Cadavieco, M. C., Jego(*), S., Ponomarenko, A., Korotkova, T.; Adamantidis(*), A.
Nat Neurosci, 19:290-298
(2016)

Tags: Behavioral Neurodynamics (Korotkova/Ponomarenko)

Abstract: During non-rapid eye movement (NREM) sleep, synchronous synaptic activity in the thalamocortical network generates predominantly low-frequency oscillations (<4 Hz) that are modulated by inhibitory inputs from the thalamic reticular nucleus (TRN). Whether TRN cells integrate sleep-wake signals from subcortical circuits remains unclear. We found that GABA neurons from the lateral hypothalamus (LHGABA) exert a strong inhibitory control over TRN GABA neurons (TRNGABA). We found that optogenetic activation of this circuit recapitulated state-dependent changes of TRN neuron activity in behaving mice and induced rapid arousal during NREM, but not REM, sleep. During deep anesthesia, activation of this circuit induced sustained cortical arousal. In contrast, optogenetic silencing of LHGABA-TRNGABA transmission increased the duration of NREM sleep and amplitude of delta (1-4 Hz) oscillations. Collectively, these results demonstrate that TRN cells integrate subcortical arousal inputs selectively during NREM sleep and may participate in sleep intensity.

Modulation of Hexadecyl-LPA-Mediated Activation of Mast Cells and Microglia by a Chemical Probe for LPA5
Kozian(*), D. H., von Haeften(*), E., Joho(*), S., Czechtizky(*), W., Anumala, U. R., Roux(*), P., Dudda(*), A., Evers(*), A.; Nazare, M.
Chembiochem, 17:861-865
(2016)

Tags: Medicinal Chemistry (Nazare)

Abstract: Mast cells and microglia play a critical role in innate immunity and inflammation and can be activated by a wide range of endogenous and exogenous stimuli. Lysophosphatidic acid (LPA) has recently been reported to activate mast cells and microglia. Using the human mast cell line HMC-1 and the mouse microglia cell line BV-2, we show that LPA-mediated activation can be prevented by blockade of the LPA receptor 5 (LPA5) in both cell lines. The identification of new LPA5-specific antagonists as tool compounds to probe and modulate the LPA5/LPA axis in relevant in vitro and in vivo assays should contribute to better understanding of the underlying role of LPAs in the development and progression of (neuro-) inflammatory diseases.

Page:  
Previous | 1, 2, 3, 4, 5 | Next
Export as:
BibTeX, XML

Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP)
Campus Berlin-Buch
Robert-Roessle-Str. 10
13125 Berlin, Germany
+4930 94793 - 100 
+4930 94793 - 109 (Fax)
info(at)fmp-berlin.de

Like many sites, we use cookies to optimize the user's browsing experience. Data Protection OK