FMP Publications

Our publications are recorded in a searchable database since 2010, updates will be added regularly.

All :: 2010, ... , 2014, 2015, 2016, 2017
All :: (, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
All :: Nadler(*), ... , Nguyen(*), Ni(*), Nicholl(*), ... , Nykjaer(*) 
References per page: Show keywords Show abstracts
Surface Binding of TOTAPOL Assists Structural Investigations of Amyloid Fibrils by Dynamic Nuclear Polarization NMR Spectroscopy
Nagaraj, M., Franks, T. W., Saeidpour(*), S., Schubeis(*), T., Oschkinat, H., Ritter(*), C.; van Rossum, B. J.
Chembiochem, 17:1308-1311

Tags: NMR-Supported Structural Biology (Oschkinat)

Abstract: Dynamic nuclear polarization (DNP) NMR can enhance sensitivity but often comes at the price of a substantial loss of resolution. Two major factors affect spectral quality: low-temperature heterogeneous line broadening and paramagnetic relaxation enhancement (PRE) effects. Investigations by NMR spectroscopy, isothermal titration calorimetry (ITC), and EPR revealed a new substantial affinity of TOTAPOL to amyloid surfaces, very similar to that shown by the fluorescent dye thioflavin-T (ThT). As a consequence, DNP spectra with remarkably good resolution and still reasonable enhancement could be obtained at very low TOTAPOL concentrations, typically 400 times lower than commonly employed. These spectra yielded several long-range constraints that were difficult to obtain without DNP. Our findings open up new strategies for structural studies with DNP NMR spectroscopy on amyloids that can bind the biradical with affinity similar to that shown towards ThT.

Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides
Bertran-Vicente, J., Penkert, M., Nieto-Garcia, O., Jeckelmann(*), J. M., Schmieder, P., Krause, E.; Hackenberger, C. P.
Nat Commun, 7:12703

Tags: Chemical Biology II (Hackenberger), Mass Spectrometry (Krause, E), Solution NMR (Schmieder)

Abstract: In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICB(Glc), which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes.

Inhibition of the key enzyme of sialic acid biosynthesis by C6-Se modified N-acetylmannosamine analogs
Nieto-Garcia, O., Wratil(*), P. R., Nguyen(*), L. D., Bohrsch(*), V., Hinderlich(*), S., Reutter(*), W.; Hackenberger, C. P. R.
Chem Sci, 7:3928-3933

Tags: Chemical Biology II (Hackenberger)

Abstract: Synthetically accessible C6-analogs of N-acetylmannosamine (ManNAc) were tested as potential inhibitors of the bifunctional UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE/MNK), the key enzyme of sialic acid biosynthesis. Enzymatic experiments revealed that the modification introduced at the C6 saccharide position strongly influences the inhibitory potency. A C6-ManNAc diselenide dimer showed the strongest kinase inhibition in the low mu M range among all the substrates tested and successfully reduced cell surface sialylation in Jurkat cells.

SORLA regulates calpain-dependent degradation of synapsin
Hartl(*), D., Nebrich(*), G., Klein(*), O., Stephanowitz, H., Krause, E.; Rohe(*), M.
Alzheimers Dement, 12:952-963

Tags: Mass Spectrometry (Krause, E.)

Abstract: INTRODUCTION: Sorting-related receptor with A-type repeats (SORLA) is an intracellular sorting receptor in neurons and a major risk factor for Alzheimer disease. METHODS: Here, we performed global proteome analyses in the brain of SORLA-deficient mice followed by biochemical and histopathologic studies to identify novel neuronal pathways affected by receptor dysfunction. RESULTS: We demonstrate that the lack of SORLA results in accumulation of phosphorylated synapsins in cortex and hippocampus. We propose an underlying molecular mechanism by demonstrating that SORLA interacts with phosphorylated synapsins through 14-3-3 adaptor proteins to deliver synapsins to calpain-mediated proteolytic degradation. DISCUSSION: Our results suggest a novel function for SORLA which is in control of synapsin degradation, potentially impacting on synaptic vesicle endocytosis and/or exocytosis.

X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes
Hu(*), H., Haas(*), S. A., Chelly(*), J., Van Esch(*), H., Raynaud(*), M., de Brouwer(*), A. P., Weinert, S., Froyen(*), G., Frints(*), S. G., Laumonnier, F., Zemojtel(*), T., Love(*), M. I., Richard(*), H., Emde(*), A. K., Bienek(*), M., Jensen(*), C., Hambrock(*), M., Fischer(*), U., Langnick(*), C., Feldkamp(*), M., Wissink-Lindhout(*), W., Lebrun(*), N., Castelnau(*), L., Rucci(*), J., Montjean(*), R., Dorseuil(*), O., Billuart(*), P., Stuhlmann, T., Shaw(*), M., Corbett(*), M. A., Gardner(*), A., Willis-Owen(*), S., Tan(*), C., Friend(*), K. L., Belet(*), S., van Roozendaal(*), K. E., Jimenez-Pocquet(*), M., Moizard(*), M. P., Ronce(*), N., Sun(*), R., O'Keeffe(*), S., Chenna(*), R., van Bommel(*), A., Goke(*), J., Hackett(*), A., Field(*), M., Christie(*), L., Boyle(*), J., Haan(*), E., Nelson(*), J., Turner(*), G., Baynam(*), G., Gillessen-Kaesbach(*), G., Müller, U., Steinberger(*), D., Budny(*), B., Badura-Stronka(*), M., Latos-Bielenska(*), A., Ousager(*), L. B., Wieacker(*), P., Rodriguez Criado(*), G., Bondeson(*), M. L., Anneren(*), G., Dufke(*), A., Cohen(*), M., Van Maldergem(*), L., Vincent-Delorme(*), C., Echenne(*), B., Simon-Bouy(*), B., Kleefstra(*), T., Willemsen(*), M., Fryns(*), J. P., Devriendt(*), K., Ullmann(*), R., Vingron(*), M., Wrogemann(*), K., Wienker(*), T. F., Tzschach(*), A., van Bokhoven(*), H., Gecz(*), J., Jentsch, T. J., Chen(*), W., Ropers(*), H. H.; Kalscheuer(*), V. M.
Molecular psychiatry, 21:133-148

Tags: Physiology and Pathology of Ion Transport (Jentsch

Abstract: X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4(-/-) mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.

A phosphoinositide conversion mechanism for exit from endosomes
Ketel, K., Krauss, M., Nicot(*), A. S., Puchkov, D., Wieffer(*), M., Müller(*), R., Subramanian(*), D., Schultz(*), C., Laporte(*), J.; Haucke, V.
Nature, 529:408-412

Tags: Molecular Pharmacology and Cell Biology (Haucke), Cellular Imaging (Wiesner/Puchkov)

Abstract: Phosphoinositides are a minor class of short-lived membrane phospholipids that serve crucial functions in cell physiology ranging from cell signalling and motility to their role as signposts of compartmental membrane identity. Phosphoinositide 4-phosphates such as phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) are concentrated at the plasma membrane, on secretory organelles, and on lysosomes, whereas phosphoinositide 3-phosphates, most notably phosphatidylinositol 3-phosphate (PI(3)P), are a hallmark of the endosomal system. Directional membrane traffic between endosomal and secretory compartments, although inherently complex, therefore requires regulated phosphoinositide conversion. The molecular mechanism underlying this conversion of phosphoinositide identity during cargo exit from endosomes by exocytosis is unknown. Here we report that surface delivery of endosomal cargo requires hydrolysis of PI(3)P by the phosphatidylinositol 3-phosphatase MTM1, an enzyme whose loss of function leads to X-linked centronuclear myopathy (also called myotubular myopathy) in humans. Removal of endosomal PI(3)P by MTM1 is accompanied by phosphatidylinositol 4-kinase-2alpha (PI4K2alpha)-dependent generation of PI(4)P and recruitment of the exocyst tethering complex to enable membrane fusion. Our data establish a mechanism for phosphoinositide conversion from PI(3)P to PI(4)P at endosomes en route to the plasma membrane and suggest that defective phosphoinositide conversion at endosomes underlies X-linked centronuclear myopathy caused by mutation of MTM1 in humans.

De novo and inherited mutations in the X-linked gene CLCN4 are associated with syndromic intellectual disability and behavior and seizure disorders in males and females
Palmer(*), E. E., Stuhlmann, T., Weinert, S., Haan(*), E., Van Esch(*), H., Holvoet(*), M., Boyle(*), J., Leffler(*), M., Raynaud(*), M., Moraine(*), C., van Bokhoven(*), H., Kleefstra(*), T., Kahrizi(*), K., Najmabadi(*), H., Ropers(*), H. H., Delgado(*), M. R., Sirsi(*), D., Golla(*), S., Sommer(*), A., Pietryga(*), M. P., Chung(*), W. K., Wynn(*), J., Rohena(*), L., Bernardo(*), E., Hamlin(*), D., Faux(*), B. M., Grange(*), D. K., Manwaring(*), L., Tolmie(*), J., Joss(*), S., Cobben(*), J. M., Duijkers(*), F. A., Goehringer(*), J. M., Challman(*), T. D., Hennig(*), F., Fischer(*), U., Grimme(*), A., Suckow(*), V., Musante(*), L., Nicholl(*), J., Shaw(*), M., Lodh(*), S. P., Niu(*), Z., Rosenfeld(*), J. A., Stankiewicz(*), P., Jentsch, T. J., Gecz(*), J., Field(*), M.; Kalscheuer(*), V. M.
Molecular psychiatry,

Tags: Physiology and Pathology of Ion Transport (Jentsch)

Abstract: Variants in CLCN4, which encodes the chloride/hydrogen ion exchanger CIC-4 prominently expressed in brain, were recently described to cause X-linked intellectual disability and epilepsy. We present detailed phenotypic information on 52 individuals from 16 families with CLCN4-related disorder: 5 affected females and 2 affected males with a de novo variant in CLCN4 (6 individuals previously unreported) and 27 affected males, 3 affected females and 15 asymptomatic female carriers from 9 families with inherited CLCN4 variants (4 families previously unreported). Intellectual disability ranged from borderline to profound. Behavioral and psychiatric disorders were common in both child- and adulthood, and included autistic features, mood disorders, obsessive-compulsive behaviors and hetero- and autoaggression. Epilepsy was common, with severity ranging from epileptic encephalopathy to well-controlled seizures. Several affected individuals showed white matter changes on cerebral neuroimaging and progressive neurological symptoms, including movement disorders and spasticity. Heterozygous females can be as severely affected as males. The variability of symptoms in females is not correlated with the X inactivation pattern studied in their blood. The mutation spectrum includes frameshift, missense and splice site variants and one single-exon deletion. All missense variants were predicted to affect CLCN4's function based on in silico tools and either segregated with the phenotype in the family or were de novo. Pathogenicity of all previously unreported missense variants was further supported by electrophysiological studies in Xenopus laevis oocytes. We compare CLCN4-related disorder with conditions related to dysfunction of other members of the CLC family.Molecular Psychiatry advance online publication, 23 August 2016; doi:10.1038/mp.2016.135.

Ultrafast Magic-Angle Spinning: Benefits for the Acquisition of Ultrawide-Line NMR Spectra of Heavy Spin-1/2 Nuclei
Pöppler, A. C., Demers, J. P., Malon(*), M., Singh(*), A. P., Roesky(*), H. W., Nishiyama(*), Y.; Lange, A.
Chemphyschem, 17:812-816

Tags: Molecular Biophysics (Lange, A.)

Abstract: The benefits of the ultrafast magic-angle spinning (MAS) approach for the acquisition of ultrawide-line NMR spectra-spectral simplification, increased mass sensitivity allowing the fast study of small amounts of material, efficient excitation, and application to multiple heavy nuclei-are demonstrated for tin(II) oxide (SnO) and the tin complex [(LB)Sn(II) Cl](+) [Sn(II) Cl3 ](-) [LB=2,6-diacetylpyridinebis(2,6-diisopropylanil)] containing two distinct tin environments. The ultrafast MAS experiments provide optimal conditions for the extraction of the chemical-shift anisotropy tensor parameters, anisotropy, and asymmetry for heavy spin-1/2 nuclei.

A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels
Schewe(*), M., Nematian-Ardestani(*), E., Sun, H., Musinszki(*), M., Cordeiro(*), S., Bucci(*), G., de Groot(*), B. L., Tucker(*), S. J., Rapedius(*), M.; Baukrowitz(*), T.
Cell, 164:937-949

Tags: Computational Chemistry and Protein Design (Kühne)

Abstract: Two-pore domain (K2P) K(+) channels are major regulators of excitability that endow cells with an outwardly rectifying background "leak" conductance. In some K2P channels, strong voltage-dependent activation has been observed, but the mechanism remains unresolved because they lack a canonical voltage-sensing domain. Here, we show voltage-dependent gating is common to most K2P channels and that this voltage sensitivity originates from the movement of three to four ions into the high electric field of an inactive selectivity filter. Overall, this ion-flux gating mechanism generates a one-way "check valve" within the filter because outward movement of K(+) induces filter opening, whereas inward movement promotes inactivation. Furthermore, many physiological stimuli switch off this flux gating mode to convert K2P channels into a leak conductance. These findings provide insight into the functional plasticity of a K(+)-selective filter and also refine our understanding of K2P channels and the mechanisms by which ion channels can sense voltage.

Lysosomal Dysfunction Caused by Cellular Accumulation of Silica Nanoparticles
Schütz, I., Lopez-Hernandez, T., Gao(*), Q., Puchkov, D., Jabs, S., Nordmeyer(*), D., Schmudde(*), M., Rühl(*), E., Graf(*), C. M.; Haucke, V.
J Biol Chem, 291:14170-14184

Tags: Molecular Pharmacology and Cell Biology (Haucke), Physiology and Pathology of Ion Transport (Jentsch), Cellular Imaging (Wiesner, Puchkov)

Abstract: Nanoparticles (NPs) are widely used as components of drugs or cosmetics and hold great promise for biomedicine, yet their effects on cell physiology remain poorly understood. Here we demonstrate that clathrin-independent dynamin 2-mediated caveolar uptake of surface-functionalized silica nanoparticles (SiNPs) impairs cell viability due to lysosomal dysfunction. We show that internalized SiNPs accumulate in lysosomes resulting in inhibition of autophagy-mediated protein turnover and impaired degradation of internalized epidermal growth factor, whereas endosomal recycling proceeds unperturbed. This phenotype is caused by perturbed delivery of cargo via autophagosomes and late endosomes to SiNP-filled cathepsin B/L-containing lysosomes rather than elevated lysosomal pH or altered mTOR activity. Given the importance of autophagy and lysosomal protein degradation for cellular proteostasis and clearance of aggregated proteins, these results raise the question of beneficial use of NPs in biomedicine and beyond.

Previous | 1, 2, 3 | Next
Export as:

Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP)
Campus Berlin-Buch
Robert-Roessle-Str. 10
13125 Berlin, Germany
+4930 94793 - 100 
+4930 94793 - 109 (Fax)

Like many sites, we use cookies to optimize the user's browsing experience. Data Protection OK