FMP Publications

Our publications are recorded in a searchable database since 2010, updates will be added regularly.

All :: 2011, ... , 2013, 2014, 2015, ... , 2017
All :: (, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
References per page: Show keywords Show abstracts


Stable Positioning of Unc13 Restricts Synaptic Vesicle Fusion to Defined Release Sites to Promote Synchronous Neurotransmission
Reddy-Alla(*), S., Böhme, M. A., Reynolds(*), E., Beis(*), C., Grasskamp, A. T., Mampell(*), M. M., Maglione, M., Jusyte, M., Rey(*), U., Babikir(*), H., McCarthy, A. W., Quentin(*), C., Matkovic(*), T., Bergeron(*), D. D., Mushtaq, Z., Goettfert(*), F., Owald(*), D., Mielke(*), T., Hell(*), S. W., Sigrist(*), S. J.; Walter, A. M.

Tags: Molecular and Theoretical Neuroscience (Walter)

Abstract: Neural information processing depends on precisely timed, Ca2+-activated synaptic vesicle exocytosis from release sites within active zones (AZs), but molecular details are unknown. Here, we identify that the (M)Unc13-family member Unc13A generates release sites and show the physiological relevance of their restrictive AZ targeting. Super-resolution and intravital imaging of Drosophila neuromuscular junctions revealed that (unlike the other release factors Unc18 and Syntaxin-1A) Unc13A was stably and precisely positioned at AZs. Local Unc13A levels predicted single AZ activity. Different Unc13A portions selectively affected release site number, position, and functionality. An N-terminal fragment stably localized to AZs, displaced endogenous Unc13A, and reduced the number of release sites, while a C-terminal fragment generated excessive sites at atypical locations, resulting in reduced and delayed evoked transmission that displayed excessive facilitation. Thus, release site generation by the Unc13A C terminus and their specific AZ localization via the N terminus ensure efficient transmission and prevent ectopic, temporally imprecise release.

Targeting G-protein-coupled receptors by Capture Compound Mass Spectrometry (CCMS) - a case study with sertindole
Blex(*), C., Michaelis(*), S., Schrey(*), A. K., Furkert, J., Eichhorst, J., Bartho(*), K., Quast(*), F. G., Marais(*), A., Hakelberg(*), M., Gruber(*), U., Niquet(*), S., Popp(*), O., Kroll(*), F., Sefkow(*), M., Schülein, R., Mathias(*), D.; Koster(*), H.
Chembiochem, 18:1639-1649

Tags: Protein Trafficking (Schülein), Cellular Imaging (Wiesner/Puchkov)

Abstract: Unbiased chemoproteomic profiling of small molecule interactions with endogenous proteins is important for drug discovery. For meaningful results, all protein classes have to be tractable, including G-protein coupled receptors (GPCRs). These are hardly tractable by affinity pulldown from lysates. We report a Capture Compound (CC)-based strategy to target and identify GPCRs directly from living cells. We synthesized CCs with sertindole attached to the CC scaffold in different orientations to target the dopamine D2 receptor (DRD2) heterologously expressed in HEK293 cells. The structure-activity relationship of sertindole for DRD2 binding is reflected in the activities of the sertindole CCs in radioligand displacement, cell-based assays, and CCMS. The activity pattern was rationalized by molecular modelling. The most active CC showed activities very similar to unmodifed sertindole. Well below 100 fmol of DRD2 in living cells used as experiment input were sufficient for unambiguous identification of captured DRD2 by mass spectrometry. Our new CCMS workflow broadens the arsenal of chemoproteomic technologies to close a critical gap for the comprehensive characterization of drug-protein interactions.

A Self-Assembled Oligopeptide as a Versatile NMR Alignment Medium for the Measurement of Residual Dipolar Couplings in Methanol
Lei(*), X. X., Qiu(*), F., Sun, H., Bai(*), L. W., Wang(*), W. X., Xiang(*), W. S.; Xiao(*), H. P.
Angew Chem Int Edit, 56:12857-12861

Tags: Computational Chemistry and Protein Design (Kühne)

Abstract: Residual dipolar coupling (RDC) is a powerful structural parameter for the determination of the constitution, conformation, and configuration of organic molecules. Herein, we report the first liquid crystal-based orienting medium that is compatible with MeOH, thus enabling RDC acquisitions of a wide range of intermediate to polar organic molecules. The liquid crystals were produced from self-assembled oligopeptide nanotubes (AAKLVFF), which are stable at very low concentrations. The presented alignment medium is highly homogeneous, and the size of RDCs can be scaled with the concentration of the peptide. To assess the accuracy of the RDC measurement by employing this new medium, seven bioactive natural products from different classes were chosen and analyzed. The straightforward preparation of the anisotropic alignment sample will offer a versatile and robust protocol for the routine RDC measurement of natural products.

An Integrative Framework Reveals Signaling-to-Transcription Events in Toll-like Receptor Signaling
Mertins(*), P., Przybylski(*), D., Yosef(*), N., Qiao(*), J., Clauser(*), K., Raychowdhury(*), R., Eisenhaure(*), T. M., Maritzen, T., Haucke, V., Satoh(*), T., Akira(*), S., Carr(*), S. A., Regev(*), A., Hacohen(*), N.; Chevrier(*), N.
Cell Rep, 19:2853-2866

Tags: Molecular Pharmacology and Cell Biology (Haucke), Membrane Traffic and Cell Motility (Maritzen)

Abstract: Building an integrated view of cellular responses to environmental cues remains a fundamental challenge due to the complexity of intracellular networks in mammalian cells. Here, we introduce an integrative biochemical and genetic framework to dissect signal transduction events using multiple data types and, in particular, to unify signaling and transcriptional networks. Using the Toll-like receptor (TLR) system as a model cellular response, we generate multifaceted datasets on physical, enzymatic, and functional interactions and integrate these data to reveal biochemical paths that connect TLR4 signaling to transcription. We define the roles of proximal TLR4 kinases, identify and functionally test two dozen candidate regulators, and demonstrate a role for Ap1ar (encoding the Gadkin protein) and its binding partner, Picalm, potentially linking vesicle transport with pro-inflammatory responses. Our study thus demonstrates how deciphering dynamic cellular responses by integrating datasets on various regulatory layers defines key components and higher-order logic underlying signaling-to-transcription pathways.


C-type natriuretic peptide and natriuretic peptide receptor B signalling inhibits cardiac sympathetic neurotransmission and autonomic function
Buttgereit(*), J., Shanks(*), J., Li(*), D., Hao(*), G., Athwal(*), A., Langenickel(*), T. H., Wright(*), H., da Costa Goncalves, A. C., Monti(*), J., Plehm(*), R., Popova(*), E., Qadri(*), F., Lapidus(*), I., Ryan(*), B., Ozcelik(*), C., Paterson(*), D. J., Bader(*), M.; Herring(*), N.
Cardiovasc Res, 112:637-644

Tags: Anchored Signaling (Klussmann)

Abstract: AIMS: B-type natriuretic peptide (BNP)-natriuretic peptide receptor A (NPR-A) receptor signalling inhibits cardiac sympathetic neurotransmission, although C-type natriuretic peptide (CNP) is the predominant neuropeptide of the nervous system with expression in the heart and vasculature. We hypothesized that CNP acts similarly to BNP, and that transgenic rats (TGRs) with neuron-specific overexpression of a dominant negative NPR-B receptor would develop heightened sympathetic drive. METHODS AND RESULTS: Mean arterial pressure and heart rate (HR) were significantly (P < 0.05) elevated in freely moving TGRs (n = 9) compared with Sprague Dawley (SD) controls (n = 10). TGR had impaired left ventricular systolic function and spectral analysis of HR variability suggested a shift towards sympathoexcitation. Immunohistochemistry demonstrated co-staining of NPR-B with tyrosine hydroxylase in stellate ganglia neurons. In SD rats, CNP (250 nM, n = 8) significantly reduced the tachycardia during right stellate ganglion stimulation (1-7 Hz) in vitro whereas the response to bath-applied norepinephrine (NE, 1 muM, n = 6) remained intact. CNP (250 nM, n = 8) significantly reduced the release of 3H-NE in isolated atria and this was prevented by the NPR-B antagonist P19 (250 nM, n = 6). The neuronal Ca2+ current (n = 6) and intracellular Ca2+ transient (n = 9, using fura-2AM) were also reduced by CNP in isolated stellate neurons. Treatment of the TGR (n = 9) with the sympatholytic clonidine (125 microg/kg per day) significantly reduced mean arterial pressure and HR to levels observed in the SD (n = 9). CONCLUSION: C-type natriuretic peptide reduces cardiac sympathetic neurotransmission via a reduction in neuronal calcium signalling and NE release through the NPR-B receptor. Situations impairing CNP-NPR-B signalling lead to hypertension, tachycardia, and impaired left ventricular systolic function secondary to sympatho-excitation.


Specific binding of Clostridium perfringens enterotoxin fragment to Claudin-b and modulation of zebrafish epidermal barrier
Zhang(*), J., Ni(*), C., Yang(*), Z., Piontek, A., Chen(*), H., Wang(*), S., Fan(*), Y., Qin(*), Z.; Piontek(*), J.
Exp Dermatol, 24:605-610

Tags: Structural Bioinformatics and Protein Design (Krause, G.)

Abstract: Claudins (Cldn) are the major components of tight junctions (TJs) sealing the paracellular cleft in tissue barriers of various organs. Zebrafish Cldnb, the homolog of mammalian Cldn4, is expressed at epithelial cell-cell contacts and is important for regulating epidermal permeability. The bacterial toxin Clostridium perfringens enterotoxin (CPE) has been shown to bind to a subset of mammalian Cldns. In this study, we used the Cldn-binding C-terminal domain of CPE (194-319 amino acids, cCPE 194-319 ) to investigate its functional role in modulating zebrafish larval epidermal barriers. In vitro analyses show that cCPE 194-319 removed Cldn4 from epithelial cells and disrupted the monolayer tightness, which could be rescued by the removal of cCPE 194-319. Incubation of zebrafish larvae with cCPE 194-319 removed Cldnb specifically from the epidermal cell membrane. Dye diffusion analysis with 4-kDa fluorescent dextran indicated that the permeability of the epidermal barrier increased due to cCPE 194-319 incubation. Electron microscopic investigation revealed reversible loss of TJ integrity by Cldnb removal. Collectively, these results suggest that cCPE 194-319 could be used as a Cldnb modulator to transiently open the epidermal barrier in zebrafish. In addition, zebrafish might be used as an in vivo system to investigate the capability of cCPE to enhance drug delivery across tissue barriers.

In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11
Varga(*), R. E., Khundadze(*), M., Damme(*), M., Nietzsche(*), S., Hoffmann(*), B., Stauber, T., Koch(*), N., Hennings(*), J. C., Franzka(*), P., Huebner(*), A. K., Kessels(*), M. M., Biskup(*), C., Jentsch, T. J., Qualmann(*), B., Braulke(*), T., Kurth(*), I., Beetz(*), C.; Hübner(*), C. A.
Plos Genet, 11:e1005454

Tags: Physiology and Pathology of Ion Transport (Jentsch)

Abstract: Hereditary spastic paraplegia (HSP) is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs). Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.


Design of a General-Purpose European Compound Screening Library for EU-OPENSCREEN
Horvath(*), D., Lisurek, M., Rupp, B., Kühne, R., Specker, E., von Kries, J., Rognan(*), D., Andersson(*), C. D., Almqvist(*), F., Elofsson(*), M., Enqvist(*), P. A., Gustavsson(*), A. L., Remez(*), N., Mestres(*), J., Marcou(*), G., Varnek(*), A., Hibert(*), M., Quintana(*), J.; Frank, R.
Chemmedchem, 9:2309-2326

Tags: Chemical Systems Biology (Frank), Screening Unit (von Kries), Computational Chemistry and Protein Design (Kühne)

Abstract: This work describes a collaborative effort to define and apply a protocol for the rational selection of a general-purpose screening library, to be used by the screening platforms affiliated with the EU-OPENSCREEN initiative. It is designed as a standard source of compounds for primary screening against novel biological targets, at the request of research partners. Given the general nature of the potential applications of this compound collection, the focus of the selection strategy lies on ensuring chemical stability, absence of reactive compounds, screening-compliant physicochemical properties, loose compliance to drug-likeness criteria (as drug design is a major, but not exclusive application), and maximal diversity/coverage of chemical space, aimed at providing hits for a wide spectrum of drugable targets. Finally, practical availability/cost issues cannot be avoided. The main goal of this publication is to inform potential future users of this library about its conception, sources, and characteristics. The outline of the selection procedure, notably of the filtering rules designed by a large committee of European medicinal chemists and chemoinformaticians, may be of general methodological interest for the screening/medicinal chemistry community. The selection task of 200K molecules out of a pre-filtered set of 1.4M candidates was shared by five independent European research groups, each picking a subset of 40K compounds according to their own in-house methodology and expertise. An in-depth analysis of chemical space coverage of the library serves not only to characterize the collection, but also to compare the various chemoinformatics-driven selection procedures of maximal diversity sets. Compound selections contributed by various participating groups were mapped onto general-purpose self-organizing maps (SOMs) built on the basis of marketed drugs and bioactive reference molecules. In this way, the occupancy of chemical space by the EU-OPENSCREEN library could be directly compared with distributions of known bioactives of various classes. This mapping highlights the relevance of the selection and shows how the consensus reached by merging the five different 40K selections contributes to achieve this relevance. The approach also allows one to readily identify subsets of target-or target-class-oriented compounds from the EU-OPENSCREEN library to suit the needs of the diverse range of potential users. The final EU-OPENSCREEN library, assembled by merging five independent selections of 40K compounds from various expert groups, represents an excellent example of a Europe-wide collaborative effort toward the common objective of building best-in-class European open screening platforms.

Site-Specific Copper-Catalyzed Oxidation of alpha-Synuclein: Tightening the Link between Metal Binding and Protein Oxidative Damage in Parkinson's Disease
Miotto(*), M. C., Rodriguez(*), E. E., Valiente-Gabioud(*), A. A., Torres-Monserrat(*), V., Binolfi, A., Quintanar(*), L., Zweckstetter(*), M., Griesinger(*), C.; Fernandez(*), C. O.
Inorg Chem, 53:4350-4358

Tags: In-Cell NMR (Selenko)

Abstract: Amyloid aggregation of a-synuclein (AS) has been linked to the pathological effects associated with Parkinson's disease (PD). Cu-II binds specifically at the N-terminus of AS and triggers its aggregation. Site-specific Cu-I-catalyzed oxidation of AS has been proposed as a plausible mechanism for metal-enhanced AS amyloid formation. In this study, Cu-I binding to AS was probed by NMR spectroscopy, in combination with synthetic peptide models, site-directed mutagenesis, and C-terminal-truncated protein variants. Our results demonstrate that both Met residues in the motif (MDVFM5)-M-1 constitute key structural determinants for the high-affinity binding of Cu-I to the N-terminal region of AS. The replacement of one Met residue by Ile causes a dramatic decrease in the binding affinity for Cu-I, whereas the removal of both Met residues results in a complete lack of binding. Moreover, these Met residues can be oxidized rapidly after air exposure of the AS-Cu-I complex, whereas Met-116 and Met-127 in the C-terminal region remain unaffected. Met-1 displays higher susceptibility to oxidative damage compared to Met-5 because it is directly involved in both Cu-II and Cu-I coordination, resulting in closer exposure to the reactive oxygen species that may be generated by the redox cycling of copper. Our findings support a mechanism where the interaction of AS with copper ions leads to site-specific metal-catalyzed oxidation in the protein under physiologically relevant conditions. In light of recent biological findings, these results support a role for AS-copper interactions in neurodegeneration in PD.

Interferon-gamma safeguards blood-brain barrier during experimental autoimmune encephalomyelitis
Ni(*), C., Wang(*), C., Zhang(*), J., Qu(*), L., Liu(*), X., Lu(*), Y., Yang(*), W., Deng(*), J., Lorenz, D., Gao(*), P., Meng(*), Q., Yan(*), X., Blasig, I. E.; Qin(*), Z.
The American journal of pathology, 184:3308-3320

Tags: Molecular Cell Physiology (Blasig, I.E.), Cellular Imaging (Wiesner)

Abstract: The function of blood-brain barrier is often disrupted during the progression of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). However, the molecular mechanism of blood-brain barrier modulation during neuroinflammation remains unclear. Herein, we show that the expression of interferon-gamma (IFNgamma) receptor on endothelial cells (ECs) protected mice from the brain inflammation during EAE. IFNgamma stabilized the integrity of the cerebral endothelium and prevented the infiltration of leukocytes into the brain. Further analysis revealed that IFNgamma increased the expression of tight junction proteins zonula occludens protein 1 and occludin, as well as membranous distribution of claudin-5, in brain ECs. Silencing claudin-5 abolished the IFNgamma-mediated improvement of EC integrity. Taken together, our results show that IFNgamma, a pleiotropic proinflammatory cytokine, stabilizes blood-brain barrier integrity and, therefore, prevents brain inflammation during EAE.

Previous | 1, 2 | Next
Export as:

Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP)
Campus Berlin-Buch
Robert-Roessle-Str. 10
13125 Berlin, Germany
+4930 94793 - 100 
+4930 94793 - 109 (Fax)

Like many sites, we use cookies to optimize the user's browsing experience. Data Protection OK