FMP Publications

Our publications are recorded in a searchable database since 2010, updates will be added regularly.

All :: 2013
All :: (, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
References per page: Show keywords Show abstracts
What's in a name? Why these proteins are intrinsically disordered: Why these proteins are intrinsically disordered
Dunker(*), A. K., Babu(*), M. M., Barbar(*), E., Blackledge(*), M., Bondos(*), S. E., Dosztanyi(*), Z., Dyson(*), H. J., Forman-Kay(*), J., Fuxreiter(*), M., Gsponer(*), J., Han(*), K. H., Jones(*), D. T., Longhi(*), S., Metallo(*), S. J., Nishikawa(*), K., Nussinov(*), R., Obradovic(*), Z., Pappu(*), R. V., Rost(*), B., Selenko, P., Subramaniam(*), V., Sussman(*), J. L., Tompa(*), P.; Uversky(*), V. N.
Intrinsically disordered proteins, 1:e24157

Tags: In-Cell NMR (Selenko)

Abstract: "What's in a name? That which we call a rose By any other name would smell as sweet." From "Romeo and Juliet", William Shakespeare (1594) This article opens a series of publications on disambiguation of the basic terms used in the field of intrinsically disordered proteins. We start from the beginning, namely from the explanation of what the expression "intrinsically disordered protein" actually means and why this particular term has been chosen as the common denominator for this class of proteins characterized by broad structural, dynamic and functional characteristics.

The alphabet of intrinsic disorder: I. Act like a Pro: On the abundance and roles of proline residues in intrinsically disordered proteins
Theillet, F. X., Kalmar(*), L., Tompa(*), P., Han(*), K. H., Selenko, P., Dunker(*), A. K., Daughdrill(*), G. W.; Uversky(*), V. N.
Intrinsically disordered proteins, 1:e24360

Tags: In-Cell NMR (Selenko)

Abstract: A significant fraction of every proteome is occupied by biologically active proteins that do not form unique three-dimensional structures. These intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) have essential biological functions and are characterized by extensive structural plasticity. Such structural and functional behavior is encoded in the amino acid sequences of IDPs/IDPRs, which are enriched in disorder-promoting residues and depleted in order-promoting residues. In fact, amino acid residues can be arranged according to their disorder-promoting tendency to form an alphabet of intrinsic disorder that defines the structural complexity and diversity of IDPs/IDPRs. This review is the first in a series of publications dedicated to the roles that different amino acid residues play in defining the phenomenon of protein intrinsic disorder. We start with proline because data suggests that of the 20 common amino acid residues, this one is the most disorder-promoting.

Export as:

Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP)
Campus Berlin-Buch
Robert-Roessle-Str. 10
13125 Berlin, Germany
+4930 94793 - 100 
+4930 94793 - 109 (Fax)

Like many sites, we use cookies to optimize the user's browsing experience. Data Protection OK