FMP Publications

Our publications are recorded in a searchable database since 2010, updates will be added regularly.

All :: 2010, ... , 2012, 2013, 2014, ... , 2017
All :: (, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
References per page: Show keywords Show abstracts
Common gating of both CLC transporter subunits underlies voltage-dependent activation of the 2Cl-/1H+ exchanger ClC-7/Ostm1
Ludwig, C. F., Ullrich, F., Leisle, L., Stauber, T.; Jentsch, T. J.
J Biol Chem, 288:28611-28619

Tags: Physiology and Pathology of Ion Transport (Jentsch)

Abstract: CLC anion transporters form dimers that function either as Cl(-) channels or as electrogenic Cl(-)/H(+) exchangers. CLC channels display two different types of "gates," "protopore" gates that open and close the two pores of a CLC dimer independently of each other and common gates that act on both pores simultaneously. ClC-7/Ostm1 is a lysosomal 2Cl(-)/1H(+) exchanger that is slowly activated by depolarization. This gating process is drastically accelerated by many CLCN7 mutations underlying human osteopetrosis. Making use of some of these mutants, we now investigate whether slow voltage activation of plasma membrane-targeted ClC-7/Ostm1 involves protopore or common gates. Voltage activation of wild-type ClC-7 subunits was accelerated by co-expressing an excess of ClC-7 subunits carrying an accelerating mutation together with a point mutation rendering these subunits transport-deficient. Conversely, voltage activation of a fast ClC-7 mutant could be slowed by co-expressing an excess of a transport-deficient mutant. These effects did not depend on whether the accelerating mutation localized to the transmembrane part or to cytoplasmic cystathionine-beta-synthase (CBS) domains of ClC-7. Combining accelerating mutations in the same subunit did not speed up gating further. No currents were observed when ClC-7 was truncated after the last intramembrane helix. Currents and slow gating were restored when the C terminus was co-expressed by itself or fused to the C terminus of the beta-subunit Ostm1. We conclude that common gating underlies the slow voltage activation of ClC-7. It depends on the CBS domain-containing C terminus that does not require covalent binding to the membrane domain of ClC-7.

NMR spectroscopy reveals unexpected structural variation at the protein-protein interface in MHC class I molecules
Beerbaum, M., Ballaschk, M., Erdmann, N., Schnick(*), C., Diehl, A., Uchanska-Ziegler(*), B., Ziegler(*), A.; Schmieder, P.
J Biomol NMR, 57:167-178

Tags: Solution NMR (Schmieder)

Abstract: beta2-Microglobulin (beta2m) is a small, monomorphic protein non-covalently bound to the heavy chain (HC) in polymorphic major histocompatibility complex (MHC) class I molecules. Given the high evolutionary conservation of structural features of beta2m in various MHC molecules as shown by X-ray crystallography, beta2m is often considered as a mere scaffolding protein. Using nuclear magnetic resonance (NMR) spectroscopy, we investigate here whether beta2m residues at the interface to the HC exhibit changes depending on HC polymorphisms and the peptides bound to the complex in solution. First we show that human beta2m can effectively be produced in deuterated form using high-cell-density-fermentation and we employ the NMR resonance assignments obtained for triple-labeled beta2m bound to the HLA-B*27:09 HC to examine the beta2m-HC interface. We then proceed to compare the resonances of beta2m in two minimally distinct subtypes, HLA-B*27:09 and HLA-B*27:05, that are differentially associated with the spondyloarthropathy Ankylosing Spondylitis. Each of these subtypes is complexed with four distinct peptides for which structural information is already available. We find that only the resonances at the beta2m-HC interface show a variation of their chemical shifts between the different complexes. This indicates the existence of an unexpected plasticity that enables beta2m to accommodate changes that depend on HC polymorphism as well as on the bound peptide through subtle structural variations of the protein-protein interface.

What's in a name? Why these proteins are intrinsically disordered: Why these proteins are intrinsically disordered
Dunker(*), A. K., Babu(*), M. M., Barbar(*), E., Blackledge(*), M., Bondos(*), S. E., Dosztanyi(*), Z., Dyson(*), H. J., Forman-Kay(*), J., Fuxreiter(*), M., Gsponer(*), J., Han(*), K. H., Jones(*), D. T., Longhi(*), S., Metallo(*), S. J., Nishikawa(*), K., Nussinov(*), R., Obradovic(*), Z., Pappu(*), R. V., Rost(*), B., Selenko, P., Subramaniam(*), V., Sussman(*), J. L., Tompa(*), P.; Uversky(*), V. N.
Intrinsically disordered proteins, 1:e24157

Tags: In-Cell NMR (Selenko)

Abstract: "What's in a name? That which we call a rose By any other name would smell as sweet." From "Romeo and Juliet", William Shakespeare (1594) This article opens a series of publications on disambiguation of the basic terms used in the field of intrinsically disordered proteins. We start from the beginning, namely from the explanation of what the expression "intrinsically disordered protein" actually means and why this particular term has been chosen as the common denominator for this class of proteins characterized by broad structural, dynamic and functional characteristics.

The alphabet of intrinsic disorder: I. Act like a Pro: On the abundance and roles of proline residues in intrinsically disordered proteins
Theillet, F. X., Kalmar(*), L., Tompa(*), P., Han(*), K. H., Selenko, P., Dunker(*), A. K., Daughdrill(*), G. W.; Uversky(*), V. N.
Intrinsically disordered proteins, 1:e24360

Tags: In-Cell NMR (Selenko)

Abstract: A significant fraction of every proteome is occupied by biologically active proteins that do not form unique three-dimensional structures. These intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) have essential biological functions and are characterized by extensive structural plasticity. Such structural and functional behavior is encoded in the amino acid sequences of IDPs/IDPRs, which are enriched in disorder-promoting residues and depleted in order-promoting residues. In fact, amino acid residues can be arranged according to their disorder-promoting tendency to form an alphabet of intrinsic disorder that defines the structural complexity and diversity of IDPs/IDPRs. This review is the first in a series of publications dedicated to the roles that different amino acid residues play in defining the phenomenon of protein intrinsic disorder. We start with proline because data suggests that of the 20 common amino acid residues, this one is the most disorder-promoting.

A Floquet description of phase alternated sequences for efficient homonuclear recoupling in solid perdeuterated systems
Jayanthi(*), S., Akbey, Ü., Uluca(*), B., Oschkinat, H.; Vega(*), S.
Journal of Magnetic Resonance, 234:10-20

Tags: NMR-Supported Structural Biology (Oschkinat)

Abstract: A Floquet description of a phase alternated homonuclear recoupling scheme for perdeuterated systems is presented. As a result, we demonstrate improvements in the recoupling efficiency of the DOuble Nucleus Enhanced Recoupling [DONER; J. Am. Chem. Soc. 131 (2009) 170541 technique by utilizing Phase Alternated Recoupling Irradiation Schemes [PARIS; Chem. Phys. Lett. 469 (2009) 342]. The effect of proton and deuterium radio frequency irradiation during recoupling has been systematically studied and theoretical observations have been verified experimentally using a deuterated model compound, L-Alanine, at 10 and 20 kHz magic angle spinning frequency. Experimental results are well in agreement with theoretical observations, thereby significantly increasing the recoupling efficiency of conventional DONER in perdeuterated systems. (C) 2013 Elsevier Inc. All rights reserved.

Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate
Posor, Y., Eichhorn-Grünig, M., Puchkov, D., Schöneberg(*), J., Ullrich(*), A., Lampe, A., Müller(*), R., Zarbakhsh(*), S., Gulluni(*), F., Hirsch(*), E., Krauss, M., Schultz(*), C., Schmoranzer, J., Noe(*), F.; Haucke, V.
Nature, 499:233-+

Tags: Molecular Pharmacology and Cell Biology (Haucke)

Abstract: Phosphoinositides serve crucial roles in cell physiology, ranging from cell signalling to membrane traffic(1,2). Among the seven eukaryotic phosphoinositides the best studied species is phosphatidylinositol-4,5-bisphosphate (PI(4,5)P-2), which is concentrated at the plasma membrane where, among other functions, it is required for the nucleation of endocytic clathrin-coated pits(3-6). No phosphatidylinositol other than PI(4,5)P-2 has been implicated in clathrin-mediated endocytosis, whereas the subsequent endosomal stages of the endocytic pathway are dominated by phosphatidylinositol-3-phosphates(PI(3)P)(7). How phosphatidylinositol conversion from PI(4,5)P-2-positive endocytic intermediates to PI(3)P-containing endosomes is achieved is unclear. Here we show that formation of phosphatidylinositol-3,4-bisphosphate (PI(3,4)P-2) by class II phosphatidylinositol-3-kinase C2 alpha (PI(3) K C2 alpha) spatiotemporally controls clathrin-mediated endocytosis. Depletion of PI(3,4)P-2 or PI(3)K C2 alpha impairs the maturation of late-stage clathrin-coated pits before fission. Timed formation of PI(3,4)P-2 by PI(3)K C2 alpha is required for selective enrichment of the BAR domain protein SNX9 at late-stage endocytic intermediates. These findings provide a mechanistic framework for the role of PI(3,4)P-2 in endocytosis and unravel a novel discrete function of PI(3,4)P-2 in a central cell physiological process.

Export as:

Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP)
Campus Berlin-Buch
Robert-Roessle-Str. 10
13125 Berlin, Germany
+4930 94793 - 100 
+4930 94793 - 109 (Fax)

Like many sites, we use cookies to optimize the user's browsing experience. Data Protection OK