FMP Publications

Our publications are recorded in a searchable database since 2010, updates will be added regularly.

All :: 2010, ... , 2014, 2015, 2016, 2017
All :: (, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
References per page: Show keywords Show abstracts
Subtype-specific block of voltage-gated K+ channels by mu-conopeptides
Leipold(*), E., Ullrich, F., Thiele(*), M., Tietze(*), A. A., Terlau(*), H., Imhof(*), D.; Heinemann(*), S. H.
Biochem. Biophys. Res. Commun., 482:1135-1140

Tags: Physiology and Pathophysiology of Ion Transport (Jentsch)

Abstract: The neurotoxic cone snail peptide mu-GIIIA specifically blocks skeletal muscle voltage-gated sodium (Na(V)1.4) channels. The related conopeptides mu-PIIIA and mu-SIIIA, however, exhibit a wider activity spectrum by also inhibiting the neuronal Na-V channels Na-V 1.2 and Na-V 1.7. Here we demonstrate that those mu-conopeptides with a broader target range also antagonize select subtypes of voltage-gated potassium channels of the K(v)1 family: mu-PIIIA and mu-SIIIA inhibited K(V)1.1 and K(V)1.6 channels in the nanomolar range, while being inactive on subtypes K(V)1.2-1.5 and K(V)2.1. Construction and electro-physiological evaluation of chimeras between K(V)1.5 and K(V)1.6 revealed that these toxins block K-V channels involving their pore regions; the subtype specificity is determined in part by the sequence close to the selectivity filter but predominantly by the so-called turret domain, i.e. the extracellular loop connecting the pore with transmembrane segment S5. Conopeptides mu-SIIIA and mu-PIIIA thus, are not specific for Na-V channels, and the known structure of some K-V channel subtypes may provide access to structural insight into the molecular interaction between-conopeptides and their target channels. (C) 2016 Elsevier Inc. All rights reserved.

Selective transport of neurotransmitters and modulators by distinct volume-regulated LRRC8 anion channels
Lutter, D., Ullrich, F., Lueck, J. C., Kempa(*), S.; Jentsch, T. J.
J Cell Sci, 130:1122-1133

Tags: Physiology and Pathology of Ion Transport (Jentsch)

Abstract: In response to swelling, mammalian cells release chloride and organic osmolytes through volume-regulated anion channels (VRACs). VRACs are heteromers of LRRC8A and other LRRC8 isoforms (LRRC8B to LRRC8E), which are co-expressed in HEK293 and most other cells. The spectrum of VRAC substrates and its dependence on particular LRRC8 isoforms remains largely unknown. We show that, besides the osmolytes taurine and myo-inositol, LRRC8 channels transport the neurotransmitters glutamate, aspartate and gamma-aminobutyric acid (GABA) and the co-activator D-serine. HEK293 cells engineered to express defined subsets of LRRC8 isoforms were used to elucidate the subunit-dependence of transport. Whereas LRRC8D was crucial for the translocation of overall neutral compounds like myo-inositol, taurine and GABA, and sustained the transport of positively charged lysine, flux of negatively charged aspartate was equally well supported by LRRC8E. Disruption of LRRC8B or LRRC8C failed to decrease the transport rates of all investigated substrates, but their inclusion into LRRC8 heteromers influenced the substrate preference of VRAC. This suggested that individual VRACs can contain three or more different LRRC8 subunits, a conclusion confirmed by sequential co-immunoprecipitations. Our work suggests a composition-dependent role of VRACs in extracellular signal transduction.

Lipid-mediated PX-BAR domain recruitment couples local membrane constriction to endocytic vesicle fission
Schöneberg(*), J., Lehmann, M., Ullrich(*), A., Posor, Y., Lo, W. T., Lichtner, G., Schmoranzer, J., Haucke, V.; Noe(*), F.
Nat Commun, 8:15873

Tags: Molecular Pharmacology and Cell Biology (Haucke)

Abstract: Clathrin-mediated endocytosis (CME) involves membrane-associated scaffolds of the bin-amphiphysin-rvs (BAR) domain protein family as well as the GTPase dynamin, and is accompanied and perhaps triggered by changes in local lipid composition. How protein recruitment, scaffold assembly and membrane deformation is spatiotemporally controlled and coupled to fission is poorly understood. We show by computational modelling and super-resolution imaging that phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] synthesis within the clathrin-coated area of endocytic intermediates triggers selective recruitment of the PX-BAR domain protein SNX9, as a result of complex interactions of endocytic proteins competing for phospholipids. The specific architecture induces positioning of SNX9 at the invagination neck where its self-assembly regulates membrane constriction, thereby providing a template for dynamin fission. These data explain how lipid conversion at endocytic pits couples local membrane constriction to fission. Our work demonstrates how computational modelling and super-resolution imaging can be combined to unravel function and mechanisms of complex cellular processes.

Evidence for Heterodimerization and Functional Interaction of the Angiotensin Type 2 Receptor and the Receptor MAS
Leonhardt(*), J., Villela(*), D. C., Teichmann, A., Munter(*), L. M., Mayer(*), M. C., Mardahl(*), M., Kirsch(*), S., Namsolleck(*), P., Lucht(*), K., Benz(*), V., Alenina(*), N., Daniell(*), N., Horiuchi(*), M., Iwai(*), M., Multhaup(*), G., Schülein, R., Bader(*), M., Santos(*), R. A., Unger(*), T.; Steckelings(*), U. M.

Tags: Protein Trafficking (Schülein), Cellular Imaging (Wiesner)

Abstract: The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may indicate heterodimerization of these receptors. Therefore, this study investigated the molecular and functional interplay between MAS and the AT2R. Molecular interactions were assessed by fluorescence resonance energy transfer and by cross correlation spectroscopy in human embryonic kidney-293 cells transfected with vectors encoding fluorophore-tagged MAS or AT2R. Functional interaction of AT2R and MAS was studied in astrocytes with CX3C chemokine receptor-1 messenger RNA expression as readout. Coexpression of fluorophore-tagged AT2R and MAS resulted in a fluorescence resonance energy transfer efficiency of 10.8 +/- 0.8%, indicating that AT2R and MAS are capable to form heterodimers. Heterodimerization was verified by competition experiments using untagged AT2R and MAS. Specificity of dimerization of AT2R and MAS was supported by lack of dimerization with the transient receptor potential cation channel, subfamily C-member 6. Dimerization of the AT2R was abolished when it was mutated at cysteine residue 35. AT2R and MAS stimulation with the respective agonists, Compound 21 or angiotensin-(1-7), significantly induced CX3C chemokine receptor-1 messenger RNA expression. Effects of each agonist were blocked by an AT2R antagonist (PD123319) and also by a MAS antagonist (A-779). Knockout of a single of these receptors made astrocytes unresponsive for both agonists. Our results suggest that MAS and the AT2R form heterodimers and that-at least in astrocytes-both receptors functionally depend on each other.

Direct Experimental Evidence for Halogen-Aryl pi Interactions in Solution from Molecular Torsion Balances
Sun, H., Horatscheck, A., Martos, V., Bartetzko, M., Uhrig, U., Lentz, D., Schmieder, P.; Nazare, M.
Angew Chem Int Ed Engl, 56:6454-6458

Tags: Medicinal Chemistry (Nazare), Solution NMR (Schmieder), Computational Chemistry/ Drug Design (Kühne)

Abstract: We dissected halogen-aryl pi interactions experimentally using a bicyclic N-arylimide based molecular torsion balances system, which is based on the influence of the non-bonded interaction on the equilibria between folded and unfolded states. Through comparison of balances modulated by higher halogens with fluorine balances, we determined the magnitude of the halogen-aryl pi interactions in our unimolecular systems to be larger than -5.0 kJ mol-1 , which is comparable with the magnitude estimated in the biomolecular systems. Our study provides direct experimental evidence of halogen-aryl pi interactions in solution, which until now have only been revealed in the solid state and evaluated theoretically by quantum-mechanical calculations.

Export as:

Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP)
Campus Berlin-Buch
Robert-Roessle-Str. 10
13125 Berlin, Germany
+4930 94793 - 100 
+4930 94793 - 109 (Fax)

Like many sites, we use cookies to optimize the user's browsing experience. Data Protection OK