FMP Publications

Our publications are recorded in a searchable database since 2010, updates will be added regularly.

All :: 2010, ... , 2014, 2015, 2016, 2017
All :: (, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
References per page: Show keywords Show abstracts
Active zone scaffolds differentially accumulate Unc13 isoforms to tune Ca(2+) channel-vesicle coupling
Böhme(*), M. A., Beis(*), C., Reddy-Alla(*), S., Reynolds(*), E., Mampell(*), M. M., Grasskamp, A. T., Lutzkendorf(*), J., Bergeron(*), D. D., Driller(*), J. H., Babikir(*), H., Göttfert(*), F., Robinson(*), I. M., O'Kane(*), C. J., Hell(*), S. W., Wahl(*), M. C., Stelzl(*), U., Loll(*), B., Walter, A. M.; Sigrist(*), S. J.
Nat Neurosci, 19:1311-1320

Tags: Molecular and Theoretical Neuroscience (Walter)

Abstract: Brain function relies on fast and precisely timed synaptic vesicle (SV) release at active zones (AZs). Efficacy of SV release depends on distance from SV to Ca(2+) channel, but molecular mechanisms controlling this are unknown. Here we found that distances can be defined by targeting two unc-13 (Unc13) isoforms to presynaptic AZ subdomains. Super-resolution and intravital imaging of developing Drosophila melanogaster glutamatergic synapses revealed that the Unc13B isoform was recruited to nascent AZs by the scaffolding proteins Syd-1 and Liprin-alpha, and Unc13A was positioned by Bruchpilot and Rim-binding protein complexes at maturing AZs. Unc13B localized 120 nm away from Ca(2+) channels, whereas Unc13A localized only 70 nm away and was responsible for docking SVs at this distance. Unc13A(null) mutants suffered from inefficient, delayed and EGTA-supersensitive release. Mathematical modeling suggested that synapses normally operate via two independent release pathways differentially positioned by either isoform. We identified isoform-specific Unc13-AZ scaffold interactions regulating SV-Ca(2+)-channel topology whose developmental tightening optimizes synaptic transmission.

The sclerostin-neutralizing antibody AbD09097 recognizes an epitope adjacent to sclerostin's binding site for the Wnt co-receptor LRP6
Boschert(*), V., Frisch(*), C., Back(*), J. W., van Pee(*), K., Weidauer(*), S. E., Muth(*), E. M., Schmieder, P., Beerbaum, M., Knappik(*), A., Timmerman(*), P.; Mueller(*), T. D.
Open biology, 6

Tags: Solution NMR (Schmieder)

Abstract: The glycoprotein sclerostin has been identified as a negative regulator of bone growth. It exerts its function by interacting with the Wnt co-receptor LRP5/6, blocks the binding of Wnt factors and thereby inhibits Wnt signalling. Neutralizing anti-sclerostin antibodies are able to restore Wnt activity and enhance bone growth thereby presenting a new osteoanabolic therapy approach for diseases such as osteoporosis. We have generated various Fab antibodies against human and murine sclerostin using a phage display set-up. Biochemical analyses have identified one Fab developed against murine sclerostin, AbD09097 that efficiently neutralizes sclerostin's Wnt inhibitory activity. In vitro interaction analysis using sclerostin variants revealed that this neutralizing Fab binds to sclerostin's flexible second loop, which has been shown to harbour the LRP5/6 binding motif. Affinity maturation was then applied to AbD09097, providing a set of improved neutralizing Fab antibodies which particularly bind human sclerostin with enhanced affinity. Determining the crystal structure of AbD09097 provides first insights into how this antibody might recognize and neutralize sclerostin. Together with the structure-function relationship derived from affinity maturation these new data will foster the rational design of new and highly efficient anti-sclerostin antibodies for the therapy of bone loss diseases such as osteoporosis.

On The Potential of Dynamic Nuclear Polarization Enhanced Diamonds in Solid-State and Dissolution (13) C NMR Spectroscopy
Bretschneider(*), C. O., Akbey, Ü., Aussenac(*), F., Olsen(*), G. L., Feintuch(*), A., Oschkinat, H.; Frydman(*), L.
Chemphyschem, 17:2691-2701

Tags: NMR-Supported Structural Biology (Oschkinat)

Abstract: Dynamic nuclear polarization (DNP) is a versatile option to improve the sensitivity of NMR and MRI. This versatility has elicited interest for overcoming potential limitations of these techniques, including the achievement of solid-state polarization enhancement at ambient conditions, and the maximization of (13) C signal lifetimes for performing in vivo MRI scans. This study explores whether diamond's (13) C behavior in nano- and micro-particles could be used to achieve these ends. The characteristics of diamond's DNP enhancement were analyzed for different magnetic fields, grain sizes, and sample environments ranging from cryogenic to ambient temperatures, in both solution and solid-state experiments. It was found that (13) C NMR signals could be boosted by orders of magnitude in either low- or room-temperature solid-state DNP experiments by utilizing naturally occurring paramagnetic P1 substitutional nitrogen defects. We attribute this behavior to the unusually long electronic/nuclear spin-lattice relaxation times characteristic of diamond, coupled with a time-independent cross-effect-like polarization transfer mechanism facilitated by a matching of the nitrogen-related hyperfine coupling and the (13) C Zeeman splitting. The efficiency of this solid-state polarization process, however, is harder to exploit in dissolution DNP-enhanced MRI contexts. The prospects for utilizing polarized diamond approaching nanoscale dimensions for both solid and solution applications are briefly discussed.

Chemical tools for interrogating inositol pyrophosphate structure and function
Brown, N. W., Marmelstein, A. M.; Fiedler, D.
Chem Soc Rev, 45:6311-6326

Tags: Chemical Biology I (Fiedler)

Abstract: The inositol pyrophosphates (PP-InsPs) are a unique group of intracellular messengers that represent some of the most highly phosphorylated molecules in nature. Genetic perturbation of the PP-InsP biosynthetic network indicates a central role for these metabolites in maintaining cellular energy homeostasis and in controlling signal transduction networks. However, despite their discovery over two decades ago, elucidating their physiologically relevant isomers, the biochemical pathways connecting these molecules to their associated phenotypes, and their modes of signal transduction has often been stymied by technical challenges. Many of the advances in understanding these molecules to date have been facilitated by the total synthesis of the various PP-InsP isomers and by the development of new methods that are capable of identifying their downstream signalling partners. Chemical tools have also been developed to distinguish between the proposed PP-InsP signal transduction mechanisms: protein binding, and a covalent modification of proteins termed protein pyrophosphorylation. In this article, we review these recent developments, discuss how they have helped to illuminate PP-InsP structure and function, and highlight opportunities for future discovery.

Elm defence against herbivores and pathogens: morphological, chemical and molecular regulation aspects
Buchel(*), K., Fenning(*), T., Gershenzon(*), J., Hilker(*), M.; Meiners, T.
Phytochem Rev, 15:961-983

Tags: Department Chemical Biology/ EU-OPENSCREEN

Abstract: Elms (Ulmus spp.) have long been appreciated for their environmental tolerance, landscape and ornamental value, and the quality of their wood. Although elm trees are extremely hardy against abiotic stresses such as wind and pollution, they are susceptible to attacks of biotic stressors. Over 100 phytopathogens and invertebrate pests are associated with elms: fungi, bacteria and insects like beetles and moths, and to a lesser extent aphids, mites, viruses and nematodes. While the biology of the pathogen and insect vector of the Dutch elm disease has been intensively studied, less attention has been paid so far to the defence mechanisms of elms to other biotic stressors. This review highlights knowledge of direct and indirect elm defences against biotic stressors focusing on morphological, chemical and gene regulation aspects. First, we report how morphological defence mechanisms via barrier formation and vessel occlusion prevent colonisation and spread of wood- and bark-inhabiting fungi and bacteria. Second, we outline how secondary metabolites such as terpenoids (volatile terpenoids, mansonones and triterpenoids) and phenolics (lignans, coumarins, flavonoids) in leaves and bark are involved in constitutive and induced chemical defence mechanisms of elms. Third, we address knowledge on how the molecular regulation of elm defence is orchestrated through the interaction of a huge variety of stress- and defence-related genes. We conclude by pointing to the gaps of knowledge on the chemical and molecular mechanisms of elm defence against pest insects and diseases. An in-depth understanding of defence mechanisms of elms will support the development of sustainable integrated management of pests and diseases attacking elms.

C-type natriuretic peptide and natriuretic peptide receptor B signalling inhibits cardiac sympathetic neurotransmission and autonomic function
Buttgereit(*), J., Shanks(*), J., Li(*), D., Hao(*), G., Athwal(*), A., Langenickel(*), T. H., Wright(*), H., da Costa Goncalves, A. C., Monti(*), J., Plehm(*), R., Popova(*), E., Qadri(*), F., Lapidus(*), I., Ryan(*), B., Ozcelik(*), C., Paterson(*), D. J., Bader(*), M.; Herring(*), N.
Cardiovasc Res, 112:637-644

Tags: Anchored Signaling (Klussmann)

Abstract: AIMS: B-type natriuretic peptide (BNP)-natriuretic peptide receptor A (NPR-A) receptor signalling inhibits cardiac sympathetic neurotransmission, although C-type natriuretic peptide (CNP) is the predominant neuropeptide of the nervous system with expression in the heart and vasculature. We hypothesized that CNP acts similarly to BNP, and that transgenic rats (TGRs) with neuron-specific overexpression of a dominant negative NPR-B receptor would develop heightened sympathetic drive. METHODS AND RESULTS: Mean arterial pressure and heart rate (HR) were significantly (P < 0.05) elevated in freely moving TGRs (n = 9) compared with Sprague Dawley (SD) controls (n = 10). TGR had impaired left ventricular systolic function and spectral analysis of HR variability suggested a shift towards sympathoexcitation. Immunohistochemistry demonstrated co-staining of NPR-B with tyrosine hydroxylase in stellate ganglia neurons. In SD rats, CNP (250 nM, n = 8) significantly reduced the tachycardia during right stellate ganglion stimulation (1-7 Hz) in vitro whereas the response to bath-applied norepinephrine (NE, 1 muM, n = 6) remained intact. CNP (250 nM, n = 8) significantly reduced the release of 3H-NE in isolated atria and this was prevented by the NPR-B antagonist P19 (250 nM, n = 6). The neuronal Ca2+ current (n = 6) and intracellular Ca2+ transient (n = 9, using fura-2AM) were also reduced by CNP in isolated stellate neurons. Treatment of the TGR (n = 9) with the sympatholytic clonidine (125 microg/kg per day) significantly reduced mean arterial pressure and HR to levels observed in the SD (n = 9). CONCLUSION: C-type natriuretic peptide reduces cardiac sympathetic neurotransmission via a reduction in neuronal calcium signalling and NE release through the NPR-B receptor. Situations impairing CNP-NPR-B signalling lead to hypertension, tachycardia, and impaired left ventricular systolic function secondary to sympatho-excitation.

Superactivation of AMPA receptors by auxiliary proteins
Carbone, A. L.; Plested, A. J.
Nat Commun, 7:10178

Tags: Molecular Neuroscience and Biophysics (Plested)

Abstract: Glutamate receptors form complexes in the brain with auxiliary proteins, which control their activity during fast synaptic transmission through a seemingly bewildering array of effects. Here we devise a way to isolate the activation of complexes using polyamines, which enables us to show that transmembrane AMPA receptor regulatory proteins (TARPs) exert their effects principally on the channel opening reaction. A thermodynamic argument suggests that because TARPs promote channel opening, receptor activation promotes AMPAR-TARP complexes into a superactive state with high open probability. A simple model based on this idea predicts all known effects of TARPs on AMPA receptor function. This model also predicts unexpected phenomena including massive potentiation in the absence of desensitization and supramaximal recovery that we subsequently detected in electrophysiological recordings. This transient positive feedback mechanism has implications for information processing in the brain, because it should allow activity-dependent facilitation of excitatory synaptic transmission through a postsynaptic mechanism.

Automatic (1)H-NMR Screening of Fatty Acid Composition in Edible Oils
Castejon(*), D., Fricke, P., Cambero(*), M. I.; Herrera(*), A.
Nutrients, 8:93

Tags: Molecular Biophysics (Lange, A.)

Abstract: In this work, we introduce an NMR-based screening method for the fatty acid composition analysis of edible oils. We describe the evaluation and optimization needed for the automated analysis of vegetable oils by low-field NMR to obtain the fatty acid composition (FAC). To achieve this, two scripts, which automatically analyze and interpret the spectral data, were developed. The objective of this work was to drive forward the automated analysis of the FAC by NMR. Due to the fact that this protocol can be carried out at low field and that the complete process from sample preparation to printing the report only takes about 3 min, this approach is promising to become a fundamental technique for high-throughput screening. To demonstrate the applicability of this method, the fatty acid composition of extra virgin olive oils from various Spanish olive varieties (arbequina, cornicabra, hojiblanca, manzanilla, and picual) was determined by (1)H-NMR spectroscopy according to this protocol.

Occludin controls HIV transcription in brain pericytes via regulation of SIRT-1 activation
Castro(*), V., Bertrand(*), L., Luethen(*), M., Dabrowski, S., Lombardi(*), J., Morgan(*), L., Sharova(*), N., Stevenson(*), M., Blasig, I. E.; Toborek(*), M.
FASEB J, 30:1234-1246

Tags: Molecular Cell Physiology (Blasig, I.E.)

Abstract: HIV invades the brain early after infection; however, its interactions with the cells of the blood-brain barrier (BBB) remain poorly understood. Our goal was to evaluate the role of occludin, one of the tight junction proteins that regulate BBB functions in HIV infection of BBB pericytes. We provide evidence that occludin levels largely control the metabolic responses of human pericytes to HIV. Occludin in BBB pericytes decreased by 10% during the first 48 h after HIV infection, correlating with increased nuclear translocation of the gene repressor C-terminal-binding protein (CtBP)-1 and NFkappaB-p65 activation. These changes were associated with decreased expression and activation of the class III histone deacetylase sirtuin (SIRT)-1. Occludin levels recovered 96 h after infection, restoring SIRT-1 and reducing HIV transcription to 20% of its highest values. We characterized occludin biochemically as a novel NADH oxidase that controls the expression and activation of SIRT-1. The inverse correlation between occludin and HIV transcription was then replicated in human primary macrophages and differentiated monocytic U937 cells, in which occludin silencing resulted in 75 and 250% increased viral transcription, respectively. Our work shows that occludin has previously unsuspected metabolic properties and is a target of HIV infection, opening the possibility of designing novel pharmacological approaches to control HIV transcription.

Chemical shift assignments and secondary structure prediction for Q4DY78, a conserved kinetoplastid-specific protein from Trypanosoma cruzi
D'Andrea(*), E. D., Diehl, A., Schmieder, P., Oschkinat, H.; Pires(*), J. R.
Biomol NMR Assign, 10:325-328

Tags: NMR-Supported Structural Biology (Oschkinat), Solution NMR (Schmieder)

Abstract: Trypanosoma cruzi, Trypanosma brucei and Leishmania spp. are kinetoplastid protozoa causative agents of Chagas disease, sleeping sickness and leishmaniasis, respectively, neglected tropical diseases estimated to infect millions of people worldwide. Their genome sequencing has revealed approximately 50 % of genes encoding hypothetical proteins of unknown function, opening possibilities for novel target identification and drug discovery. Q4DY78 is a putative essential protein from T. cruzi conserved in the related kinetoplastids and divergent from mammalian host proteins. Here we report the (1)H, (15)N, and (13)C chemical shift assignments and secondary structure analysis of the Q4DY78 protein as basis for NMR structure determination, functional analysis and drug screening.

Previous | 1, 2, 3, 4, 5, 6, ... , 11 | Next
Export as:

Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP)
Campus Berlin-Buch
Robert-Roessle-Str. 10
13125 Berlin, Germany
+4930 94793 - 100 
+4930 94793 - 109 (Fax)

Like many sites, we use cookies to optimize the user's browsing experience. Data Protection OK