FMP Publications

Our publications are recorded in a searchable database since 2010, updates will be added regularly.

All :: 2010, ... , 2013, 2014, 2015, ... , 2017
All :: (, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
All :: Waaler(*), ... , White(*), Whiting(*), Wichard, ... , Wynn(*) 
References per page: Show keywords Show abstracts
The specific monomer/dimer equilibrium of the corticotropin-releasing factor receptor type 1 is established in the endoplasmic reticulum
Teichmann, A., Gibert, A., Lampe, A., Grzesik, P., Rutz, C., Furkert, J., Schmoranzer, J., Krause, G., Wiesner, B.; Schülein, R.
J Biol Chem, 289:24250-24262

Tags: Protein Trafficking (Schülein), Cellular Imaging (Wiesner), Structural Bioinformatics and Protein Design (Krause, G.), Molecular Pharmacology and Cell Biology (Haucke)

Abstract: G protein-coupled receptors (GPCRs) represent the most important drug targets. Although the smallest functional unit of a GPCR is a monomer, it became clear in the past decades that the vast majority of the receptors form dimers. Only very recently, however, data were presented that some receptors may in fact be expressed as a mixture of monomers and dimers and that the interaction of the receptor protomers is dynamic. To date, equilibrium measurements were restricted to the plasma membrane due to experimental limitations. We have addressed the question as to where this equilibrium is established for the corticotropin-releasing factor receptor type 1. By developing a novel approach to analyze single molecule fluorescence cross-correlation spectroscopy data for intracellular membrane compartments, we show that the corticotropin-releasing factor receptor type 1 has a specific monomer/dimer equilibrium that is already established in the endoplasmic reticulum (ER). It remains constant at the plasma membrane even following receptor activation. Moreover, we demonstrate for seven additional GPCRs that they are expressed in specific but substantially different monomer/dimer ratios. Although it is well known that proteins may dimerize in the ER in principle, our data show that the ER is also able to establish the specific monomer/dimer ratios of GPCRs, which sheds new light on the functions of this compartment.

Use of Kaede and Kikume green-red fusions for live cell imaging of G protein-coupled receptors
Schmidt, A., Wiesner, B., Schülein, R.; Teichmann, A.
Methods Mol Biol, 1174:139-156

Tags: Protein Trafficking (Schülein), Cellular Imaging (Wiesner)

Abstract: The fusion of fluorescent proteins to G protein-coupled receptors (GPCRs) is an important tool to study, e.g., trafficking and protein interactions of these important drug targets. In the past, the green fluorescent protein and its derivatives have been widely used as fluorescent tags. More recently, it was reported that photoconvertible fluorescent proteins (PCFPs) such as Kaede or Kikume green-red protein could also be used as fluorescent tags for GPCRs. These proteins have the obvious advantage that their fluorescence can be switched once the GPCR of interest has reached a specific subcellular compartment. Here, we summarize the recent progress for live cell imaging of GPCRs using these PCFPs for trafficking, biosynthesis, and protein/protein interaction studies.

Differences between lutropin-mediated and choriogonadotropin-mediated receptor activation
Grzesik, P., Teichmann, A., Furkert, J., Rutz, C., Wiesner, B., Kleinau(*), G., Schülein, R., Gromoll(*), J.; Krause, G.
Febs J, 281:1479-1492

Tags: Structural Bioinformatics and Protein Design (Krause, G.), Protein Trafficking (Schülein), Cellular Imaging (Wiesner)

Abstract: The human lutropin/choriogonadotropin receptor (hLHR) for the gonadotropic hormones human luteinizing hormone (hLH; lutropin) and human choriogonadotropin (hCG) is crucial for normal sexual development and fertility. We aimed to unravel differences between the two hLHR hormones in molecular activation mechanisms at hLHR. We utilized a specific hLHR variant that lacks exon 10 (hLHR-delExon10), which maintains full cAMP signaling by hCG, but decreases hLH-induced receptor signaling, resulting in a pathogenic phenotype. Exon 10 encodes 27 amino acids within the hinge region, which is an extracellular segment that is important for signaling and hormone interaction. Initially, we assumed that the lack of exon 10 might disturb intermolecular trans-activation of hLH, a mechanism that has been reported for hCG at hLHR. Coexpression of signaling-deficient hLHR and binding-deficient hLHR can be used to examine the mechanisms of receptor signaling, in particular intermolecular cooperation and intramolecular cis-activation. Therefore, hLHR-delExon10 was combined with the hLHR Lys605-->Glu mutant, in which signaling is abolished, and the hLHR mutant Cys131-->Arg, in which binding is deficient. We found that hCG signaling was partially rescued, indicating trans-activation. However, the hLH signal could not be restored via forced trans-activation with any construct. Fluorescence cross-correlation spectroscopy detected oligomerization in all combinations, indicating that these functional differences cannot be explained by monomerization of hLHR-delExon10. Thus, our data demonstrate not only that the different behavior of hLH at hLHR-delExon10 is unlikely to be related to modified intermolecular receptor activation, but also that hLH may exclusively stimulate the targeted hLHR by cis-activation, whereas hCG is also capable of inducing trans-activation.

[Professor Dr. sc. med.Walter Schilling (14th July 1932-7th April 2014)]
Grohe(*), C., Oehme(*), P.; Wiesner, B.
Pneumologie (Stuttgart, Germany), 68:432

Tags: Cellular Imaging (Wiesner)

Reporter assay for endo/lysosomal escape of toxin-based therapeutics
Gilabert-Oriol(*), R., Thakur(*), M., von Mallinckrodt(*), B., Bhargava(*), C., Wiesner, B., Eichhorst, J., Melzig(*), M. F., Fuchs(*), H.; Weng(*), A.
Toxins (Basel), 6:1644-1666

Tags: Cellular Imaging (Wiesner)

Abstract: Protein-based therapeutics with cytosolic targets are capable of exhibiting their therapeutic effect once they have escaped from the endosomes or lysosomes. In this study, the reporters-horseradish peroxidase (HRP), Alexa Fluor 488 (Alexa) and ricin A-chain (RTA)-were investigated for their capacity to monitor the endo/lysosomal escape of the ribosome-inactivating protein, saporin. The conjugates-saporin-HRP, (Alexa)saporin and saporin-KQ-RTA-were constructed, and the endo/lysosomal escape of these conjugates alone (lack of endo/lysosomal release) or in combination with certain structurally-specific triterpenoidal saponins (efficient endo/lysosomal escape) was characterized. HRP failed in reporting the endo/lysosomal escape of saporin. Contrastingly, Alexa Fluor 488 successfully allowed the report of the process at a toxin concentration of 1000 nM. In addition, single endo/lysosome analysis facilitated the determination of the amount of (Alexa)saporin released from each vesicle. RTA was also successful in reporting the endo/lysosomal escape of the enzymatically inactive mutant, saporin-KQ, but in this case, the sensitivity of the method reached a toxin concentration of 10 nM. In conclusion, the simultaneous usage of Alexa Fluor 488 and RTA as reporters may provide the possibility of monitoring the endo/lysosomal escape of protein-based therapeutics in the concentration range of 10-1000 nM.

Transport activity and presence of ClC-7/Ostm1 complex account for different cellular functions
Weinert, S., Jabs, S., Hohensee, S., Chan(*), W. L., Kornak(*), U.; Jentsch, T. J.
Embo Rep, 15:784-791

Tags: Physiology and Pathology of Ion Transport (Jentsch)

Abstract: Loss of the lysosomal ClC-7/Ostm1 2Cl(-)/H(+) exchanger causes lysosomal storage disease and osteopetrosis in humans and additionally changes fur colour in mice. Its conversion into a Cl(-) conductance in Clcn7(unc/unc) mice entails similarly severe lysosomal storage, but less severe osteopetrosis and no change in fur colour. To elucidate the basis for these phenotypical differences, we generated Clcn7(td/td) mice expressing an ion transport-deficient mutant. Their osteopetrosis was as severe as in Clcn7(-/-) mice, suggesting that the electric shunt provided by ClC-7(unc) can partially rescue osteoclast function. The normal coat colour of Clcn7(td/td) mice and their less severe neurodegeneration suggested that the ClC-7 protein, even when lacking measurable ion transport activity, is sufficient for hair pigmentation and that the conductance of ClC-7(unc) is harmful for neurons. Our in vivo structure-function analysis of ClC-7 reveals that both protein-protein interactions and ion transport must be considered in the pathogenesis of ClC-7-related diseases.

Stretch-activation of angiotensin II type 1a receptors contributes to the myogenic response of mouse mesenteric and renal arteries
Schleifenbaum(*), J., Kassmann(*), M., Szijarto(*), I. A., Hercule(*), H. C., Tano(*), J. Y., Weinert, S., Heidenreich, M., Pathan(*), A. R., Anistan(*), Y. M., Alenina(*), N., Rusch(*), N. J., Bader(*), M., Jentsch, T. J.; Gollasch(*), M.
Circ Res, 115:263-272

Tags: Physiology and Pathology of Ion Transport (Jentsch)

Abstract: RATIONALE: Vascular wall stretch is the major stimulus for the myogenic response of small arteries to pressure. The molecular mechanisms are elusive, but recent findings suggest that G protein-coupled receptors can elicit a stretch response. OBJECTIVE: To determine whether angiotensin II type 1 receptors (AT1R) in vascular smooth muscle cells exert mechanosensitivity and identify the downstream ion channel mediators of myogenic vasoconstriction. METHODS AND RESULTS: We used mice deficient in AT1R signaling molecules and putative ion channel targets, namely AT1R, angiotensinogen, transient receptor potential channel 6 (TRPC6) channels, or several subtypes of the voltage-gated K+ (Kv7) gene family (KCNQ3, 4, or 5). We identified a mechanosensing mechanism in isolated mesenteric arteries and in the renal circulation that relies on coupling of the AT1R subtype a to a Gq/11 protein as a critical event to accomplish the myogenic response. Arterial mechanoactivation occurs after pharmacological block of AT1R and in the absence of angiotensinogen or TRPC6 channels. Activation of AT1R subtype a by osmotically induced membrane stretch suppresses an XE991-sensitive Kv channel current in patch-clamped vascular smooth muscle cells, and similar concentrations of XE991 enhance mesenteric and renal myogenic tone. Although XE991-sensitive KCNQ3, 4, and 5 channels are expressed in vascular smooth muscle cells, XE991-sensitive K+ current and myogenic contractions persist in arteries deficient in these channels. CONCLUSIONS: Our results provide definitive evidence that myogenic responses of mouse mesenteric and renal arteries rely on ligand-independent, mechanoactivation of AT1R subtype a. The AT1R subtype a signal relies on an ion channel distinct from TRPC6 or KCNQ3, 4, or 5 to enact vascular smooth muscle cell activation and elevated vascular resistance.

Highly conserved cysteines are involved in the oligomerization of occludin-redox dependency of the second extracellular loop
Bellmann, C., Schreivogel, S., Günther, R., Dabrowski, S., Schümann, M., Wolburg(*), H.; Blasig, I. E.
Antioxid Redox Signal, 20:855-867

Tags: Molecular Cell Physiology (Blasig, I.E.), Mass Spectrometry (Krause, E.)

Abstract: UNLABELLED: The tight junction (TJ) marker occludin is a 4-transmembrane domain (TMD) protein with unclear physiological and pathological functions, interacting with other TJ proteins. It oligomerizes and is redox sensitive. However, oligomerization sites and mechanisms are unknown. AIMS: To identify hypoxia-sensitive binding sites, we investigated the consequences of amino-acid substitutions of highly conserved cysteines in human occludin, under normal and hypoxic incubations. RESULTS: (i) The extracellular loop 2 (ECL2) showed homophilic trans- and cis-association between opposing cells and along the cell membrane, respectively, caused by a loop properly folded via an intraloop disulfide bridge between the shielded C216 and C237. Hypoxia and reductants prevented the associations. (ii) C82 in TMD1 directly cis-associated without disulfide formation. (iii) C76 in TMD1 and C148 in TMD2 limited the trans-interaction; C76 also limited occludin-related paracellular tightness and changed the strand morphology of claudin-1. (iv) The diminished binding strength found after substituting C82, C216, or C237 was accompanied by increased occludin mobility in the cell membrane. INNOVATION: The data enable the first experimentally proven structural model of occludin and its homophilic interaction sites, in which the ECL2, via intraloop disulfide formation, has a central role in occludin's hypoxia-sensitive oligomerization and to regulate the structure of TJs. CONCLUSION: Our findings support the new concept that occludin acts as a hypoxiasensor and contributes toward regulating the TJ assembly redox dependently. This is of pathogenic relevance for tissue barrier injury with reducing conditions. The ECL2 disulfide might be a model for four TMD proteins in TJs with two conserved cysteines in an ECL.

ClC-7 expression levels critically regulate bone turnover, but not gastric acid secretion
Supanchart(*), C., Wartosch, L., Schlack(*), C., Kühnisch(*), J., Felsenberg, D., Fuhrmann(*), J. C., de Vernejoul(*), M. C., Jentsch, T. J.; Kornak(*), U.
Bone, 58:92-102

Tags: Physiology and Pathology of Ion Transport (Jentsch)

Abstract: Mutations in the 2Cl(-)/1H(+)-exchanger ClC-7 impair osteoclast function and cause different types of osteodastrich osteopetrosis. However, it is unknown to what extent ClC-7 function has to be reduced to become rate-limiting for bone resorption. In osteoclasts from osteopetrosis patients expression of the mutated ClC-7 protein did not correlate with disease severity and resorption impairment. Therefore, a series of transgenic mice expressing ClC-7 in osteoclasts at different levels was generated. Crossing of these mice with Clat7(-/-) mutants rescued the osteopetrotic phenotype to variable degrees. One resulting double transgenic line mimicked human autosomal dominant osteopetrosis. The trabecular bone of these mice showed a reduction of osteoblast numbers, osteoid, and osteoblast marker gene expression indicative of reduced osteoblast function. In osteoclasts from these mutants ClC-7 expression levels were 20 to 30% of wildtype levels. These reduced levels not only impaired resorptive activity, but also increased numbers, size and nucleus numbers of osteoclasts differentiated in vitro. Although ClC-7 was expressed in the stomach and PTH levels were high in Clcn7(-/-) mutants loss of ClC-7 did not entail a relevant elevation of gastric pH. In conclusion, we show that in our model a reduction of ClC-7 function by approximately 70% is sufficient to increase bone mass, but does not necessarily enhance bone formation. ClC-7 does not appear to be crucially involved in gastric acid secretion, which explains the absence of an osteopetrorickets phenotype in CLCN7-related osteopetrosis.

Imaging of doxorubicin release from theranostic macromolecular prodrugs via fluorescence resonance energy transfer
Krüger(*), H. R., Schütz, I., Justies(*), A., Licha(*), K., Welker(*), P., Haucke, V.; Calderon(*), M.
J Control Release, 194:189-196

Tags: Molecular Pharmacology and Cell Biology (Haucke)

Abstract: Herein we present a FRET-based theranostic macromolecular prodrug (TMP) composed of (a) dendritic polyglycerol (PG) as polymeric nanocarrier, (b) doxorubicin (Dox) linked via a pH-sensitive hydrazone to (c) a tri-functional linker, and (d) an indodicarbocyanine dye (IDCC) attached in close proximity to Dox. The drug fluorescence is quenched via intramolecular FRET until the pH-sensitive hydrazone bond between the TMP and Dox is cleaved at acidic pH. By measuring its fluorescence, we characterized the TMP cleavage kinetics at different pH values in vitro. The intracellular release of Dox from the carrier was monitored in real time in intact cancer cells, giving more insight into the mode of action of a polymer drug conjugate.

Previous | 1, 2, 3, 4 | Next
Export as:

Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP)
Campus Berlin-Buch
Robert-Roessle-Str. 10
13125 Berlin, Germany
+4930 94793 - 100 
+4930 94793 - 109 (Fax)

Like many sites, we use cookies to optimize the user's browsing experience. Data Protection OK