FMP Publications

Our publications are recorded in a searchable database since 2010, updates will be added regularly.

Year:  
All :: 2010, 2014, 2015, 2016, 2017
Author:  
All :: (, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
All :: Xi(*), ... , Xiang(*), Xiao(*), Xiong(*), ... , Xue(*) 
Preferences: 
References per page: Show keywords Show abstracts
References
A Two-Component Adhesive: Tau Fibrils Arise from a Combination of a Well-Defined Motif and Conformationally Flexible Interactions
Xiang(*), S. Q., Kulminskaya(*), N., Habenstein(*), B., Biernat(*), J., Tepper(*), K., Paulat(*), M., Griesinger(*), C., Becker(*), S., Lange, A., Mandelkow(*), E.; Linser(*), R.
J. Am. Chem. Soc., 139:2639-2646
(2017)

Tags: Molecular Biophysics (Lange, A.)

Abstract: Fibrillar aggregates of A beta and Tau in the brain are the major hallmarks of Alzheimer's disease. Most Tau fibers have a twisted appearance, but the twist can be variable and even absent. This ambiguity, which has also been associated with different phenotypes of tauopathies, has led to controversial assumptions about fibril constitution, and it is unclear to-date what the molecular causes of this polymorphism are. To tackle this question, we used solid-state NMR strategies providing assignments of non-seeded three-repeat-domain Tau(3RD) with an inherent heterogeneity. This is in contrast to the general approach to characterize the most homogeneous preparations by construct truncation or intricate seeding protocols. Here, carbon and nitrogen chemical-shift conservation between fibrils revealed invariable secondary-structure properties, however, with inter-monomer interactions variable among samples. Residues with variable amide shifts are localized mostly to N- and C-terminal regions within the rigid beta structure in the repeat region of Tau(3RD). By contrast, the hexapeptide motif in repeat R3, a crucial motif for fibril formation, shows strikingly low variability of all NMR parameters: Starting as a nucleation site for monomer monomer contacts, this six-residue sequence element also turns into a well-defined structural element upon fibril formation. Given the absence of external causes in vitro, the interplay of structurally differently conserved elements in this protein likely reflects an intrinsic property of Tau fibrils.

A Self-Assembled Oligopeptide as a Versatile NMR Alignment Medium for the Measurement of Residual Dipolar Couplings in Methanol
Lei(*), X. X., Qiu(*), F., Sun, H., Bai(*), L. W., Wang(*), W. X., Xiang(*), W. S.; Xiao(*), H. P.
Angew Chem Int Edit, 56:12857-12861
(2017)

Tags: Computational Chemistry and Protein Design (Kühne)

Abstract: Residual dipolar coupling (RDC) is a powerful structural parameter for the determination of the constitution, conformation, and configuration of organic molecules. Herein, we report the first liquid crystal-based orienting medium that is compatible with MeOH, thus enabling RDC acquisitions of a wide range of intermediate to polar organic molecules. The liquid crystals were produced from self-assembled oligopeptide nanotubes (AAKLVFF), which are stable at very low concentrations. The presented alignment medium is highly homogeneous, and the size of RDCs can be scaled with the concentration of the peptide. To assess the accuracy of the RDC measurement by employing this new medium, seven bioactive natural products from different classes were chosen and analyzed. The straightforward preparation of the anisotropic alignment sample will offer a versatile and robust protocol for the routine RDC measurement of natural products.

Export as:
BibTeX, XML

Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP)
Campus Berlin-Buch
Robert-Roessle-Str. 10
13125 Berlin, Germany
+4930 94793 - 100 
+4930 94793 - 109 (Fax)
info(at)fmp-berlin.de

Like many sites, we use cookies to optimize the user's browsing experience. Data Protection OK