FMP Publications

Our publications are recorded in a searchable database since 2010, updates will be added regularly.

All :: 2010, ... , 2014, 2015, 2016, 2017
All :: (, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
All :: Yamamoto(*), ... , Yi(*), Yin(*), Yiu(*), ... , Yvon(*) 
References per page: Show keywords Show abstracts
Simian hemorrhagic fever virus cell entry is dependent on CD163 and uses a clathrin-mediated endocytosis-like pathway
Cai(*), Y., Postnikova(*), E. N., Bernbaum(*), J. G., Yu(*), S. Q., Mazur(*), S., Deiuliis(*), N. M., Radoshitzky(*), S. R., Lackemeyer(*), M. G., McCluskey(*), A., Robinson(*), P. J., Haucke, V., Wahl-Jensen(*), V., Bailey(*), A. L., Lauck(*), M., Friedrich(*), T. C., O'Connor(*), D. H., Goldberg(*), T. L., Jahrling(*), P. B.; Kuhn(*), J. H.
J Virol, 89:844-856

Tags: Molecular Pharmacology and Cell Biology (Haucke)

Abstract: UNLABELLED: Simian hemorrhagic fever virus (SHFV) causes a severe and almost uniformly fatal viral hemorrhagic fever in Asian macaques but is thought to be nonpathogenic for humans. To date, the SHFV life cycle is almost completely uncharacterized on the molecular level. Here, we describe the first steps of the SHFV life cycle. Our experiments indicate that SHFV enters target cells by low-pH-dependent endocytosis. Dynamin inhibitors, chlorpromazine, methyl-beta-cyclodextrin, chloroquine, and concanamycin A dramatically reduced SHFV entry efficiency, whereas the macropinocytosis inhibitors EIPA, blebbistatin, and wortmannin and the caveolin-mediated endocytosis inhibitors nystatin and filipin III had no effect. Furthermore, overexpression and knockout study and electron microscopy results indicate that SHFV entry occurs by a dynamin-dependent clathrin-mediated endocytosis-like pathway. Experiments utilizing latrunculin B, cytochalasin B, and cytochalasin D indicate that SHFV does not hijack the actin polymerization pathway. Treatment of target cells with proteases (proteinase K, papain, alpha-chymotrypsin, and trypsin) abrogated entry, indicating that the SHFV cell surface receptor is a protein. Phospholipases A2 and D had no effect on SHFV entry. Finally, treatment of cells with antibodies targeting CD163, a cell surface molecule identified as an entry factor for the SHFV-related porcine reproductive and respiratory syndrome virus, diminished SHFV replication, identifying CD163 as an important SHFV entry component. IMPORTANCE: Simian hemorrhagic fever virus (SHFV) causes highly lethal disease in Asian macaques resembling human illness caused by Ebola or Lassa virus. However, little is known about SHFV's ecology and molecular biology and the mechanism by which it causes disease. The results of this study shed light on how SHFV enters its target cells. Using electron microscopy and inhibitors for various cellular pathways, we demonstrate that SHFV invades cells by low-pH-dependent, actin-independent endocytosis, likely with the help of a cellular surface protein.

Untangling a Repetitive Amyloid Sequence: Correlating Biofilm-Derived and Segmentally Labeled Curli Fimbriae by Solid-State NMR Spectroscopy
Schubeis(*), T., Yuan(*), P., Ahmed(*), M., Nagaraj, M., van Rossum, B. J.; Ritter(*), C.
Angew Chem Int Ed Engl, 54:14669-14672

Tags: NMR-Supported Structural Biology (Oschkinat)

Abstract: Curli are functional bacterial amyloids produced by an intricate biogenesis machinery. Insights into their folding and regulation can advance our understanding of amyloidogenesis. However, gaining detailed structural information of amyloids, and their tendency for structural polymorphisms, remains challenging. Herein we compare high-quality solid-state NMR spectra from biofilm-derived and recombinantly produced curli and provide evidence that they adopt a similar, well-defined beta-solenoid arrangement. Curli subunits consist of five sequence repeats, resulting in severe spectral overlap. Using segmental isotope labeling, we obtained the unambiguous sequence-specific resonance assignments and secondary structure of one repeat, and demonstrate that all repeats are most likely structurally equivalent.

Remarkable enhancement of ambient-air electrical conductivity of the perylenediimide pi-stacks isolated in the flexible films of a hydrogen-bonded polymer
Supur(*), M., Yurtsever(*), A.; Akbey, Ü.
Rsc Adv, 5:64240-64246

Tags: NMR-Supported Structural Biology (Oschkinat)

Abstract: N,N'-di(2-(trimethylammoniumiodide)ethylene) perylenediimide (TAIPDI), forming extensive pi-stacks through the strong pi-pi interactions of large pi-planes, was isolated in the hydrogen-bonding milieu of polyvinyl alcohol (PVA) from aqueous solutions. The stacking behaviour of TAIPDIs in PVA films was investigated by using UV-vis and magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. It was concluded that the TAIPDI molecules were organized as extensive pi-stacks in the PVA matrix controlled by the interactions with the polymer chains. The resulting films of TAIPDI/PVA were doped with electrons by using a strong reducing agent. The electrical current obtained in the electron-doped TAIPDI/PVA films was 740 times higher under the same bias as compared to that of reduced TAIPDIs cast on a glass substrate without a polymer additive. The significant increase in the conductivity of electron-doped TAIPDI/PVA films reflects the strong effect of the uninterrupted pi-stacking of TAIPDIs extending in the flexible PVA films and the protection of the doped electrons from the oxygen in the air, provided by the H-bonded environment in PVA.

A Multiplexed NMR-Reporter Approach to Measure Cellular Kinase and Phosphatase Activities in Real-Time
Thongwichian, R., Kosten, J., Benary(*), U., Rose, H. M., Stuiver, M., Theillet, F. X., Dose, A., Koch(*), B., Yokoyama(*), H., Schwarzer, D., Wolf(*), J.; Selenko, P.
J. Am. Chem. Soc., 137:6468-6471

Tags: In-Cell NMR (Selenko), Protein Chemistry (Schwarzer)

Abstract: Cell signaling is governed by dynamic changes in kinase and phosphatase activities, which are difficult to assess with discontinuous readout methods. Here, we introduce an NMR-based reporter approach to directly identify active kinases and phosphatases in complex physiological environments such as cell lysates and to measure their individual activities in a semicontinuous fashion. Multiplexed NMR profiling of reporter phosphorylation states provides unique advantages for kinase inhibitor studies and reveals reversible modulations of cellular enzyme activities under different metabolic conditions.

Specific binding of Clostridium perfringens enterotoxin fragment to Claudin-b and modulation of zebrafish epidermal barrier
Zhang(*), J., Ni(*), C., Yang(*), Z., Piontek, A., Chen(*), H., Wang(*), S., Fan(*), Y., Qin(*), Z.; Piontek(*), J.
Exp Dermatol, 24:605-610

Tags: Structural Bioinformatics and Protein Design (Krause, G.)

Abstract: Claudins (Cldn) are the major components of tight junctions (TJs) sealing the paracellular cleft in tissue barriers of various organs. Zebrafish Cldnb, the homolog of mammalian Cldn4, is expressed at epithelial cell-cell contacts and is important for regulating epidermal permeability. The bacterial toxin Clostridium perfringens enterotoxin (CPE) has been shown to bind to a subset of mammalian Cldns. In this study, we used the Cldn-binding C-terminal domain of CPE (194-319 amino acids, cCPE 194-319 ) to investigate its functional role in modulating zebrafish larval epidermal barriers. In vitro analyses show that cCPE 194-319 removed Cldn4 from epithelial cells and disrupted the monolayer tightness, which could be rescued by the removal of cCPE 194-319. Incubation of zebrafish larvae with cCPE 194-319 removed Cldnb specifically from the epidermal cell membrane. Dye diffusion analysis with 4-kDa fluorescent dextran indicated that the permeability of the epidermal barrier increased due to cCPE 194-319 incubation. Electron microscopic investigation revealed reversible loss of TJ integrity by Cldnb removal. Collectively, these results suggest that cCPE 194-319 could be used as a Cldnb modulator to transiently open the epidermal barrier in zebrafish. In addition, zebrafish might be used as an in vivo system to investigate the capability of cCPE to enhance drug delivery across tissue barriers.

Export as:

Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP)
Campus Berlin-Buch
Robert-Roessle-Str. 10
13125 Berlin, Germany
+4930 94793 - 100 
+4930 94793 - 109 (Fax)

Like many sites, we use cookies to optimize the user's browsing experience. Data Protection OK