FMP Publications

Our publications are recorded in a searchable database since 2010, updates will be added regularly.

Year:  
All :: 2010, ... , 2012, 2013, 2014, ... , 2017
Author:  
All :: (, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
Preferences: 
References per page: Show keywords Show abstracts
References
Lipophilic prodrugs of a triazole-containing colchicine analogue in liposomes: Biological effects on human tumor cells
Kuznetsova(*), N. R., Svirshchevskaya(*), E. V., Sitnikov(*), N. S., Abodo(*), L., Sutorius(*), H., Zapke, J., Velder(*), J., Thomopoulou(*), P., Oschkinat, H., Prokop(*), A., Schmalz(*), H. G., Fedorov(*), A. Y.; Vodovozova(*), E. L.
Russ J Bioorg Chem+, 39:543-552
(2013)

Tags: NMR-Supported Structural Biology (Oschkinat)

Abstract: Colchicine site binders-blockers of tubulin polymerization-are potential antimitotic agents for anticancer therapy. To reduce their systemic toxicity and improve biodistribution, encapsulation in nanosized liposomes may be employed. Liposomes present a convenient means for preparation of injectable for-mulations of hydrophobic compounds, however colchicine as such is known to leak through the lipid bilayer. In this study, newly synthesized triazole-containing analogues of colchicine and allocolchicine, and their palmitic and oleic esters (lipophilic prodrugs) were tested for anti-proliferative activity and apoptosis-inducing potential. In contrast to colchicine conjugates, whose activities ranged with those of colchicine, allocolchicine derivatives exhibited drastically lower effects and were discarded. Liposomes of about 100 nm in diameter composed of egg phosphatidylcholine-yeast phosphatidylinositol-palmitic or oleic prodrug, 8: 1: 1, by mol, were prepared by standard extrusion technique and tested in a panel of four human tumor cell lines. Liposome formulations preserved the biological activities of the parent colchicinoid the most towards human epithelial tumor cells. Moreover, liposomal form of the oleoyl bearing colchicinoid inhibited cell proliferation more efficiently than free lipophilic prodrug. Due to substantial loading capacity of the liposomes, the dispersions contain sufficient concentration of the active agent to test wide dose range in experiments on systemic administration to animals.

Small-molecule screening identifies modulators of aquaporin-2 trafficking
Bogum, J., Faust(*), D., Zühlke, K., Eichhorst, J., Moutty, M. C., Furkert, J., Eldahshan(*), A., Neuenschwander, M., von Kries, J. P., Wiesner, B., Trimpert(*), C., Deen(*), P. M., Valenti(*), G., Rosenthal(*), W.; Klussmann(*), E.
Journal of the American Society of Nephrology : JASN, 24:744-758
(2013)

Tags: Cellular Imaging (Wiesner), Screening Unit (von Kries), Anchored Signaling (Klussmann)

Abstract: In the principal cells of the renal collecting duct, arginine vasopressin (AVP) stimulates the synthesis of cAMP, leading to signaling events that culminate in the phosphorylation of aquaporin-2 water channels and their redistribution from intracellular domains to the plasma membrane via vesicular trafficking. The molecular mechanisms that control aquaporin-2 trafficking and the consequent water reabsorption, however, are not completely understood. Here, we used a cell-based assay and automated immunofluorescence microscopy to screen 17,700 small molecules for inhibitors of the cAMP-dependent redistribution of aquaporin-2. This approach identified 17 inhibitors, including 4-acetyldiphyllin, a selective blocker of vacuolar H(+)-ATPase that increases the pH of intracellular vesicles and causes accumulation of aquaporin-2 in the Golgi compartment. Although 4-acetyldiphyllin did not inhibit forskolin-induced increases in cAMP formation and downstream activation of protein kinase A (PKA), it did prevent cAMP/PKA-dependent phosphorylation at serine 256 of aquaporin-2, which triggers the redistribution to the plasma membrane. It did not, however, prevent cAMP-induced changes to the phosphorylation status at serines 261 or 269. Last, we identified the fungicide fluconazole as an inhibitor of cAMP-mediated redistribution of aquaporin-2, but its target in this pathway remains unknown. In conclusion, our screening approach provides a method to begin dissecting molecular mechanisms underlying AVP-mediated water reabsorption, evidenced by our identification of 4-acetyldiphyllin as a modulator of aquaporin-2 trafficking.

NMR spectroscopy reveals unexpected structural variation at the protein-protein interface in MHC class I molecules
Beerbaum, M., Ballaschk, M., Erdmann, N., Schnick(*), C., Diehl, A., Uchanska-Ziegler(*), B., Ziegler(*), A.; Schmieder, P.
J Biomol NMR, 57:167-178
(2013)

Tags: Solution NMR (Schmieder)

Abstract: beta2-Microglobulin (beta2m) is a small, monomorphic protein non-covalently bound to the heavy chain (HC) in polymorphic major histocompatibility complex (MHC) class I molecules. Given the high evolutionary conservation of structural features of beta2m in various MHC molecules as shown by X-ray crystallography, beta2m is often considered as a mere scaffolding protein. Using nuclear magnetic resonance (NMR) spectroscopy, we investigate here whether beta2m residues at the interface to the HC exhibit changes depending on HC polymorphisms and the peptides bound to the complex in solution. First we show that human beta2m can effectively be produced in deuterated form using high-cell-density-fermentation and we employ the NMR resonance assignments obtained for triple-labeled beta2m bound to the HLA-B*27:09 HC to examine the beta2m-HC interface. We then proceed to compare the resonances of beta2m in two minimally distinct subtypes, HLA-B*27:09 and HLA-B*27:05, that are differentially associated with the spondyloarthropathy Ankylosing Spondylitis. Each of these subtypes is complexed with four distinct peptides for which structural information is already available. We find that only the resonances at the beta2m-HC interface show a variation of their chemical shifts between the different complexes. This indicates the existence of an unexpected plasticity that enables beta2m to accommodate changes that depend on HC polymorphism as well as on the bound peptide through subtle structural variations of the protein-protein interface.

A Well-Defined Pd Hybrid Material for the Z-Selective Semihydrogenation of Alkynes Characterized at the Molecular Level by DNP SENS
Conley(*), M. P., Drost(*), R. M., Baffert(*), M., Gajan(*), D., Elsevier(*), C., Franks, W. T., Oschkinat, H., Veyre(*), L., Zagdoun(*), A., Rossini(*), A., Lelli(*), M., Lesage(*), A., Casano(*), G., Ouari(*), O., Tordo(*), P., Emsley(*), L., Coperet(*), C.; Thieuleux(*), C.
Chem-Eur J, 19:12234-12238
(2013)

Tags: NMR-Supported Structural Biology (Oschkinat)

Improved Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy through Controlled Incorporation of Deuterated Functional Groups
Zagdoun(*), A., Rossini(*), A. J., Conley(*), M. P., Grüning(*), W. R., Schwarzwälder(*), M., Lelli(*), M., Franks, W. T., Oschkinat, H., Coperet(*), C., Emsley(*), L.; Lesage(*), A.
Angew Chem Int Edit, 52:1222-1225
(2013)

Tags: NMR-Supported Structural Biology (Oschkinat)

The Clip-Segment of the von Willebrand Domain 1 of the BMP Modulator Protein Crossveinless 2 Is Preformed
Fiebig(*), J. E., Weidauer(*), S. E., Qiu(*), L. Y., Bauer(*), M., Schmieder, P., Beerbaum, M., Zhang(*), J. L., Oschkinat, H., Sebald(*), W.; Mueller(*), T. D.
Molecules, 18:11658-11682
(2013)

Tags: NMR-Supported Structural Biology (Oschkinat), Solution NMR (Schmieder)

Abstract: Bone Morphogenetic Proteins (BMPs) are secreted protein hormones that act as morphogens and exert essential roles during embryonic development of tissues and organs. Signaling by BMPs occurs via hetero-oligomerization of two types of serine/threonine kinase transmembrane receptors. Due to the small number of available receptors for a large number of BMP ligands ligand-receptor promiscuity presents an evident problem requiring additional regulatory mechanisms for ligand-specific signaling. Such additional regulation is achieved through a plethora of extracellular antagonists, among them members of the Chordin superfamily, that modulate BMP signaling activity by binding. The key-element in Chordin-related antagonists for interacting with BMPs is the von Willebrand type C (VWC) module, which is a small domain of about 50 to 60 residues occurring in many different proteins. Although a structure of the VWC domain of the Chordin-member Crossveinless 2 (CV2) bound to BMP-2 has been determined by X-ray crystallography, the molecular mechanism by which the VWC domain binds BMPs has remained unclear. Here we present the NMR structure of the Danio rerio CV2 VWC1 domain in its unbound state showing that the key features for high affinity binding to BMP-2 is a pre-oriented peptide loop.

Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate
Posor, Y., Eichhorn-Grünig, M., Puchkov, D., Schöneberg(*), J., Ullrich(*), A., Lampe, A., Müller(*), R., Zarbakhsh(*), S., Gulluni(*), F., Hirsch(*), E., Krauss, M., Schultz(*), C., Schmoranzer, J., Noe(*), F.; Haucke, V.
Nature, 499:233-+
(2013)

Tags: Molecular Pharmacology and Cell Biology (Haucke)

Abstract: Phosphoinositides serve crucial roles in cell physiology, ranging from cell signalling to membrane traffic(1,2). Among the seven eukaryotic phosphoinositides the best studied species is phosphatidylinositol-4,5-bisphosphate (PI(4,5)P-2), which is concentrated at the plasma membrane where, among other functions, it is required for the nucleation of endocytic clathrin-coated pits(3-6). No phosphatidylinositol other than PI(4,5)P-2 has been implicated in clathrin-mediated endocytosis, whereas the subsequent endosomal stages of the endocytic pathway are dominated by phosphatidylinositol-3-phosphates(PI(3)P)(7). How phosphatidylinositol conversion from PI(4,5)P-2-positive endocytic intermediates to PI(3)P-containing endosomes is achieved is unclear. Here we show that formation of phosphatidylinositol-3,4-bisphosphate (PI(3,4)P-2) by class II phosphatidylinositol-3-kinase C2 alpha (PI(3) K C2 alpha) spatiotemporally controls clathrin-mediated endocytosis. Depletion of PI(3,4)P-2 or PI(3)K C2 alpha impairs the maturation of late-stage clathrin-coated pits before fission. Timed formation of PI(3,4)P-2 by PI(3)K C2 alpha is required for selective enrichment of the BAR domain protein SNX9 at late-stage endocytic intermediates. These findings provide a mechanistic framework for the role of PI(3,4)P-2 in endocytosis and unravel a novel discrete function of PI(3,4)P-2 in a central cell physiological process.

Highly functionalized terpyridines as competitive inhibitors of AKAP-PKA interactions
Schäfer(*), G., Milic(*), J., Eldahshan, A., Götz(*), F., Zühlke(*), K., Schillinger, C., Kreuchwig, A., Elkins(*), J. M., Abdul Azeez(*), K. R., Oder(*), A., Moutty(*), M. C., Masada(*), N., Beerbaum, M., Schlegel, B., Niquet(*), S., Schmieder, P., Krause, G., von Kries, J. P., Cooper(*), D. M., Knapp(*), S., Rademann, J., Rosenthal(*), W.; Klussmann(*), E.
Angew Chem Int Ed Engl, 52:12187-12191
(2013)

Tags: Medicinal Chemistry (Rademann), Screening Unit (von Kries), Solution NMR (Schmieder)

Export as:
BibTeX, XML

Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP)
Campus Berlin-Buch
Robert-Roessle-Str. 10
13125 Berlin, Germany
+4930 94793 - 100 
+4930 94793 - 109 (Fax)
info(at)fmp-berlin.de

Like many sites, we use cookies to optimize the user's browsing experience. Data Protection OK