FMP Publications

Our publications are recorded in a searchable database since 2010, updates will be added regularly.

Year:  
All :: 2010, ... , 2014, 2015, 2016, 2017
Author:  
All :: (, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z 
All :: Haag(*), ... , Hennies, Hennig(*), Henning(*), ... , Hyvl(*) 
Preferences: 
References per page: Show keywords Show abstracts
References
AKAP18:PKA-RIIalpha structure reveals crucial anchor points for recognition of regulatory subunits of PKA
Götz, F., Roske(*), Y., Schulz(*), M. S., Autenrieth(*), K., Bertinetti(*), D., Faelber(*), K., Zühlke(*), K., Kreuchwig, A., Kennedy(*), E. J., Krause, G., Daumke(*), O., Herberg(*), F. W., Heinemann(*), U.; Klussmann(*), E.
Biochem J, 473:1881-1894
(2016)

Tags: Structural Bioinformatics and Protein Design (Krause, G.), Anchored Signaling (Klussmann)

Abstract: A-kinase anchoring proteins (AKAPs) interact with the dimerization/docking (D/D) domains of regulatory subunits of the ubiquitous protein kinase A (PKA). AKAPs tether PKA to defined cellular compartments establishing distinct pools to increase the specificity of PKA signalling. Here, we elucidated the structure of an extended PKA-binding domain of AKAP18beta bound to the D/D domain of the regulatory RIIalpha subunits of PKA. We identified three hydrophilic anchor points in AKAP18beta outside the core PKA-binding domain, which mediate contacts with the D/D domain. Such anchor points are conserved within AKAPs that bind regulatory RII subunits of PKA. We derived a different set of anchor points in AKAPs binding regulatory RI subunits of PKA. In vitro and cell-based experiments confirm the relevance of these sites for the interaction of RII subunits with AKAP18 and of RI subunits with the RI-specific smAKAP. Thus we report a novel mechanism governing interactions of AKAPs with PKA. The sequence specificity of each AKAP around the anchor points and the requirement of these points for the tight binding of PKA allow the development of selective inhibitors to unequivocally ascribe cellular functions to the AKAP18-PKA and other AKAP-PKA interactions.

RIM-binding protein 2 regulates release probability by fine-tuning calcium channel localization at murine hippocampal synapses
Grauel(*), M. K., Maglione, M., Reddy-Alla(*), S., Willmes(*), C. G., Brockmann(*), M. M., Trimbuch(*), T., Rosenmund(*), T., Pangalos(*), M., Vardar(*), G., Stumpf(*), A., Walter, A. M., Rost(*), B. R., Eickholt(*), B. J., Haucke, V., Schmitz(*), D., Sigrist(*), S. J.; Rosenmund(*), C.
Proc Natl Acad Sci U S A, 113:11615-11620
(2016)

Tags: Molecular Pharmacology and Cell Biology (Haucke), Molecular and Theoretical Neuroscience (Walter)

Abstract: The tight spatial coupling of synaptic vesicles and voltage-gated Ca2+ channels (CaVs) ensures efficient action potential-triggered neurotransmitter release from presynaptic active zones (AZs). Rab-interacting molecule-binding proteins (RIM-BPs) interact with Ca2+ channels and via RIM with other components of the release machinery. Although human RIM-BPs have been implicated in autism spectrum disorders, little is known about the role of mammalian RIM-BPs in synaptic transmission. We investigated RIM-BP2-deficient murine hippocampal neurons in cultures and slices. Short-term facilitation is significantly enhanced in both model systems. Detailed analysis in culture revealed a reduction in initial release probability, which presumably underlies the increased short-term facilitation. Superresolution microscopy revealed an impairment in CaV2.1 clustering at AZs, which likely alters Ca2+ nanodomains at release sites and thereby affects release probability. Additional deletion of RIM-BP1 does not exacerbate the phenotype, indicating that RIM-BP2 is the dominating RIM-BP isoform at these synapses.

A phosphoinositide conversion mechanism for exit from endosomes
Ketel, K., Krauss, M., Nicot(*), A. S., Puchkov, D., Wieffer(*), M., Müller(*), R., Subramanian(*), D., Schultz(*), C., Laporte(*), J.; Haucke, V.
Nature, 529:408-412
(2016)

Tags: Molecular Pharmacology and Cell Biology (Haucke), Cellular Imaging (Wiesner/Puchkov)

Abstract: Phosphoinositides are a minor class of short-lived membrane phospholipids that serve crucial functions in cell physiology ranging from cell signalling and motility to their role as signposts of compartmental membrane identity. Phosphoinositide 4-phosphates such as phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) are concentrated at the plasma membrane, on secretory organelles, and on lysosomes, whereas phosphoinositide 3-phosphates, most notably phosphatidylinositol 3-phosphate (PI(3)P), are a hallmark of the endosomal system. Directional membrane traffic between endosomal and secretory compartments, although inherently complex, therefore requires regulated phosphoinositide conversion. The molecular mechanism underlying this conversion of phosphoinositide identity during cargo exit from endosomes by exocytosis is unknown. Here we report that surface delivery of endosomal cargo requires hydrolysis of PI(3)P by the phosphatidylinositol 3-phosphatase MTM1, an enzyme whose loss of function leads to X-linked centronuclear myopathy (also called myotubular myopathy) in humans. Removal of endosomal PI(3)P by MTM1 is accompanied by phosphatidylinositol 4-kinase-2alpha (PI4K2alpha)-dependent generation of PI(4)P and recruitment of the exocyst tethering complex to enable membrane fusion. Our data establish a mechanism for phosphoinositide conversion from PI(3)P to PI(4)P at endosomes en route to the plasma membrane and suggest that defective phosphoinositide conversion at endosomes underlies X-linked centronuclear myopathy caused by mutation of MTM1 in humans.

Directing lipid transport at membrane contact sites
Krauss, M.; Haucke, V.
Nat Cell Biol, 18:461-463
(2016)

Tags: Molecular Pharmacology and Cell Biology (Haucke)

Abstract: Contact sites between the endoplasmic reticulum and the plasma membrane mediate receptor signalling. How this function is controlled physically and functionally is poorly understood. Extended synaptotagmins are now shown to shuttle the lipid metabolite diacylglycerol from the plasma membrane to the endoplasmic reticulum in receptor-stimulated cells.

Autophagosome Formation by Endophilin Keeps Synapses in Shape
Kuijpers, M.; Haucke, V.
Neuron, 92:675-677
(2016)

Tags: Molecular Pharmacology and Cell Biology (Haucke)

Abstract: Soukup et al. (2016), in this issue of Neuron, and Murdoch et al. (2016), in Cell Reports, reveal an unexpected function for the endocytic protein endophilin in autophagosome formation at synapses: preventing neurodegeneration and ataxia.

Type II PI4-kinases control Weibel-Palade body biogenesis and von Willebrand factor structure in human endothelial cells
Lopes da Silva(*), M., O'Connor(*), M. N., Kriston-Vizi(*), J., White(*), I. J., Al-Shawi(*), R., Simons(*), J. P., Mössinger, J., Haucke, V.; Cutler(*), D. F.
J Cell Sci, 129:2096-2105
(2016)

Tags: Molecular Pharmacology and Cell Biology (Haucke)

Abstract: Weibel-Palade bodies (WPBs) are endothelial storage organelles that mediate the release of molecules involved in thrombosis, inflammation and angiogenesis, including the pro-thrombotic glycoprotein von Willebrand factor (VWF). Although many protein components required for WPB formation and function have been identified, the role of lipids is almost unknown. We examined two key phosphatidylinositol kinases that control phosphatidylinositol 4-phosphate levels at the trans-Golgi network, the site of WPB biogenesis. RNA interference of the type II phosphatidylinositol 4-kinases PI4KIIalpha and PI4KIIbeta in primary human endothelial cells leads to formation of an increased proportion of short WPB with perturbed packing of VWF, as exemplified by increased exposure of antibody-binding sites. When stimulated with histamine, these cells release normal levels of VWF yet, under flow, form very few platelet-catching VWF strings. In PI4KIIalpha-deficient mice, immuno-microscopy revealed that VWF packaging is also perturbed and these mice exhibit increased blood loss after tail cut compared to controls. This is the first demonstration that lipid kinases can control the biosynthesis of VWF and the formation of WPBs that are capable of full haemostatic function.

Phosphatidylinositol 3-phosphates-at the interface between cell signalling and membrane traffic
Marat, A. L.; Haucke, V.
EMBO J, 35:561-579
(2016)

Tags: Molecular Pharmacology and Cell Biology (Haucke)

Abstract: Phosphoinositides (PIs) form a minor class of phospholipids with crucial functions in cell physiology, ranging from cell signalling and motility to a role as signposts of compartmental membrane identity. Phosphatidylinositol 3-phosphates are present at the plasma membrane and within the endolysosomal system, where they serve as key regulators of both cell signalling and of intracellular membrane traffic. Here, we provide an overview of the metabolic pathways that regulate cellular synthesis of PI 3-phosphates at distinct intracellular sites and discuss the mechanisms by which these lipids regulate cell signalling and membrane traffic. Finally, we provide a framework for how PI 3-phosphate metabolism is integrated into the cellular network.

5-Aryl-2-(naphtha-1-yl)sulfonamido-thiazol-4(5H)-ones as clathrin inhibitors
Robertson(*), M. J., Horatscheck, A., Sauer, S., von Kleist(*), L., Baker, J. R., Stahlschmidt, W., Nazare, M., Whiting(*), A., Chau(*), N., Robinson(*), P. J., Haucke, V.; McCluskey(*), A.
Org Biomol Chem, 14:11266-11278
(2016)

Tags: Molecular Pharmacology and Cell Biology (Haucke), Medicinal Chemistry (Nazare)

Abstract: The development of a (Z)-5-((6,8-dichloro-4-oxo-4H-chromen-3-yl)methylene)-2-thioxothiazolidin-4-one (2), rhodanine-based lead that led to the Pitstop(R) 2 family of clathrin inhibitors is described herein. Head group substitution and bioisosteric replacement of the rhodanine core with a 2-aminothiazol-4(5H)-one scaffold eliminated off target dynamin activity. A series of N-substituents gave first phenylglycine (20, IC50 approximately 20 muM) then phenyl (25, IC50 approximately 7.1 muM) and 1-napthyl sulfonamide (26, Pitstop(R) 2 compound, IC50 approximately 1.9 muM) analogues with good activity, validating this approach. A final library exploring the head group resulted in three analogues displaying either slight improvements or comparable activity (33, 38, and 29 with IC50 approximately 1.4, 1.6 and 1.8 muM respectively) and nine others with IC50 < 10 muM. These results were rationalized using in silico docking studies. Docking studies predicted enhanced Pitstop(R) 2 family binding, not a loss of binding, within the Pistop(R) groove of the reported clathrin mutant invalidating recent assumptions of poor selectivity for this family of clathrin inhibitors.

Lysosomal Dysfunction Caused by Cellular Accumulation of Silica Nanoparticles
Schütz, I., Lopez-Hernandez, T., Gao(*), Q., Puchkov, D., Jabs, S., Nordmeyer(*), D., Schmudde(*), M., Rühl(*), E., Graf(*), C. M.; Haucke, V.
J Biol Chem, 291:14170-14184
(2016)

Tags: Molecular Pharmacology and Cell Biology (Haucke), Physiology and Pathology of Ion Transport (Jentsch), Cellular Imaging (Wiesner, Puchkov)

Abstract: Nanoparticles (NPs) are widely used as components of drugs or cosmetics and hold great promise for biomedicine, yet their effects on cell physiology remain poorly understood. Here we demonstrate that clathrin-independent dynamin 2-mediated caveolar uptake of surface-functionalized silica nanoparticles (SiNPs) impairs cell viability due to lysosomal dysfunction. We show that internalized SiNPs accumulate in lysosomes resulting in inhibition of autophagy-mediated protein turnover and impaired degradation of internalized epidermal growth factor, whereas endosomal recycling proceeds unperturbed. This phenotype is caused by perturbed delivery of cargo via autophagosomes and late endosomes to SiNP-filled cathepsin B/L-containing lysosomes rather than elevated lysosomal pH or altered mTOR activity. Given the importance of autophagy and lysosomal protein degradation for cellular proteostasis and clearance of aggregated proteins, these results raise the question of beneficial use of NPs in biomedicine and beyond.

The progressive ankylosis protein ANK facilitates clathrin- and adaptor-mediated membrane traffic at the trans-Golgi network-to-endosome interface
Seifert(*), W., Posor, Y., Schu(*), P., Stenbeck(*), G., Mundlos(*), S., Klaassen(*), S., Nürnberg(*), P., Haucke, V., Kornak(*), U.; Kühnisch(*), J.
Hum Mol Genet, 25:3836-3848
(2016)

Tags: Molecular Pharmacology and Cell Biology (Haucke)

Abstract: Dominant or recessive mutations in the progressive ankylosis gene ANKH have been linked to familial chondrocalcinosis (CCAL2), craniometaphyseal dysplasia (CMD), mental retardation, deafness and ankylosis syndrome (MRDA). The function of the encoded membrane protein ANK in cellular compartments other than the plasma membrane is unknown. Here, we show that ANK localizes to the trans-Golgi network (TGN), clathrin-coated vesicles and the plasma membrane. ANK functionally interacts with clathrin and clathrin associated adaptor protein (AP) complexes as loss of either protein causes ANK dispersion from the TGN to cytoplasmic endosome-like puncta. Consistent with its subcellular localization, loss of ANK results in reduced formation of tubular membrane carriers from the TGN, perinuclear accumulation of early endosomes and impaired transferrin endocytosis. Our data indicate that clathrin/AP-mediated cycling of ANK between the TGN, endosomes, and the cell surface regulates membrane traffic at the TGN/endosomal interface. These findings suggest that dysfunction of Golgi-endosomal membrane traffic may contribute to ANKH-associated pathologies.

Page:  
Previous | 1, 2, 3, 4, 5 | Next
Export as:
BibTeX, XML

Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP)
Campus Berlin-Buch
Robert-Roessle-Str. 10
13125 Berlin, Germany
+4930 94793 - 100 
+4930 94793 - 109 (Fax)
info(at)fmp-berlin.de

Diese Website verwendet Cookies zur Verbesserung des inhaltlichen Angebots. Datenschutz OK