Pressemitteilungen

Eintrag vom: 25.10.2019
Kategorie: Aktuell, Pressemitteilungen

Erste dynamische Bilder zeigen Funktion von Rhomboid-Proteasen

Rhomboid-Proteasen sind klinisch relevante Zellmembran-Proteine, die bei verschiedenen Krankheiten eine Rolle spielen. Mittels Festkörper-NMR-Spektroskopie haben Forscher vom Berliner Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) nun erstmals Rhomboid-Proteasen in einer natürlichen Lipidumgebung bei der Arbeit zuschauen können. Die erlangten dynamischen Bilder legen die Grundlagen, um neue Medikamente zu entwickeln, beispielsweise gegen Parkinson oder Malaria. Im Journal of the American Chemical Society sind soeben die Ergebnisse der wegweisenden Arbeit erschienen.

Untersuchung der Rhomboidprotease GlpG mit Hilfe von Festkörper-NMR. (Barth van Rossum, FMP)

In unseren Zellen arbeiten rund um die Uhr Zehntausende Proteine. Ein Teil dieser fleißigen Arbeiter sitzt in der Zellmembran; so auch die Familie der sogenannten Rhomboid-Proteasen. Da diese Intramembran-Proteasen an vielen biologischen Prozessen beteiligt sind und auch bei Krankheiten wie Parkinson, Diabetes, Krebs und Malaria eine Rolle spielen, sind sie klinisch höchst relevant.
Bislang konnten Rhomboid-Proteasen mit der Röntgenkristallografie sichtbar gemacht werden. Diese Untersuchungen liefern allerdings nur statische Bilder aus einer künstlichen Umgebung, weshalb offen blieb, was in der Zellmembran passiert, wenn die Proteine ihre Hauptaufgabe verrichten, nämlich andere Membranproteine zu schneiden und damit eine Signalkaskade auszulösen.

Das vermutete Tor, das sich öffnet, gibt es tatsächlich
Diesen äußerst komplexen Prozess hat die Arbeitsgruppe von Prof. Adam Lange vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) nun zum ersten Mal mit der Festkörper-NMR-Spektroskopie sichtbar machen können, und zwar in einer weitgehend natürlichen Umgebung. Die Forscher konnten beobachten, wie sich welche Teile der Rhomboid-Protease bewegen und dass sich zum Schneiden anderer Proteine kurzzeitig ein Gate öffnet, damit das zu schneidende Protein zum aktiven Zentrum der Protease gelangen kann.

Arbeit legt Grundlagen für neue Medikamente
Das Projekt wurde im Rahmen des Exzellenz Clusters UniSysCat durchgeführt und legt die Grundlagen, um Rhomboid-Proteasen noch besser zu charakterisieren. Mehr noch: Das gewonnene Wissen ist hilfreich für Untersuchungen, wie man die klinisch relevanten Membranproteine pharmakologisch beeinflussen kann. Auch Lange und seine Mitarbeiter wollen jetzt nach Substanzen suchen, um fehlgeleitete Rhomboid-Proteasen zu hemmen.

Publikation
Chaowei Shi*, Carl Öster*, Claudia Bohg, Longmei Li, Sascha Lange, Veniamin Chevelkov, Adam Lange. Structure and Dynamics of the Rhomboid Protease GlpG in Liposomes Studied by Solid-State NMR, Journal of the American Chemical Society, October 2019; DOI: 10.1021/jacs.9b08952    *equally contributing first authors.



Kontakt
Prof. Dr. Adam Lange
Abteilung Molekulare Biophysik
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
alange@fmp-berlin.de
Tel.: 0049 30 94793-190
www.leibniz-fmp.de/lange


Öffentlichkeitsarbeit
Silke Oßwald
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
Tel.: +49-30-94793-104
E-Mail: osswald(at)fmp-berlin.de


Das Leibniz-Institut für Molekulare Pharmakologie (FMP) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.900 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

 

 

Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP)
Campus Berlin-Buch
Robert-Roessle-Str. 10
13125 Berlin, Germany
+4930 94793 - 100 
+4930 94793 - 109 (Fax)
info(at)fmp-berlin.de

Diese Website verwendet Cookies zur Verbesserung des inhaltlichen Angebots. Datenschutz OK