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During the past decade, mutations in several ion-channel
genes have been shown to cause inherited neurological
diseases. This is not surprising given the large number of
different ion channels and their prominent role in signal
processing. Biophysical studies of mutant ion channels in vitro
allow detailed investigations of the basic mechanism
underlying these ‘channelopathies’. A full understanding of
these diseases, however, requires knowing the roles these
channels play in their cellular and systemic context. Differences
in this context often cause different phenotypes in humans and
mice. The situation is further complicated by the developmental
effects and other secondary effects that might result from ion-
channel mutations. Recent studies have described the different
thresholds to which ion-channel function must be decreased in
order to cause disease.
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Abbreviations
BFNC benign familial neonatal convulsions
DFNA/B autosomal dominant/recessive deafness
EA episodic ataxia
FHM familial hemiplegic migraine
GEFS generalised epilepsy and febrile seizures
LQT long QT syndrome
SCA spinocerebellar ataxia

Introduction
Ion channels form permeation pathways for the passive dif-
fusion of ions across biological membranes. They have
much higher transport rates than do transporters (permeas-
es) or active pumps, giving rise to the sizeable currents that
are characteristic of electric signal processing in nerve and
muscle. For ion channels to generate a current, electro-
chemical gradients need to be established for the permeant
ions. This is accomplished by an interplay between active
pumps, co-transporters, and constitutively open ion chan-
nels. Mutations in these transporter genes can influence
electrical signalling indirectly, as exemplified by mutations
in a Na+/H+ exchanger that lead to epilepsy in mice [1] and
by mutations in various different transporters and channels
that lead to deafness [2,3,4••,5–7].

Given the large number of ion-channel genes expressed in
the nervous system, the channelopathies currently known
probably represent the tip of an iceberg. For many ion
channels, however, a total loss of function may result in
early lethality; therefore, only the more subtle changes in
function may lead to the diseases that are observable in

humans. This is probably the case for important Na+-chan-
nel isoforms, such as those dominating excitation in
skeletal muscle or heart, and may also be the case for the
two channel subunits that assemble to form M-type
K+-channels, which are key regulators of neuronal
excitability [8••,9•]. This concept is supported by the
observation that many channelopathies are paroxysmal
(i.e. cause transient convulsions): mutations leading to a
constant disability might be incompatible with life, or may
significantly decrease the frequency of the mutation with-
in the human population. In contrast to the severe
symptoms associated with the loss of function of certain
key ion channels, the large number of ion-channel isoforms
may lead to a functional redundancy under most circum-
stances. Indeed, disruption of some K+-channel subunits
in mice results only in mild phenotypes [10,11].

Neurological diseases may be caused by mutations in many
classes of ion channels, including voltage-gated potassium,
sodium, calcium and chloride channels, as well as ligand-
gated cation and anion channels (see Table 1). This short
review will focus on diseases of the central nervous system
(CNS) and will only briefly mention the well-understood
channelopathies of heart and skeletal muscle (see [12] for
an excellent review). We will first focus on individual ion-
channel classes. We will then discuss epilepsy, which can
be caused by mutations in different ion channel genes, as
well as in several other genes. 

Diseases caused by mutations in KCNQ
K++--channels
Although there are about 80 different K+-channel genes in
the nematode C. elegans [13] and probably many more in
humans, mutations in about ten K+-channel genes only are
known to cause human disease. Quite remarkably, these
include all four known members of the KCNQ subfamily
of K+-channels [4••,14–17]. Investigation of diseases relat-
ed to these channels allows insight into the various
functions of K+-channels, and provides an interesting para-
digm for the different thresholds separating normal current
magnitudes from those causing disease (see Table 2).

The first KCNQ potassium channel, KCNQ1 or KvLQT1,
was isolated by positional cloning using families affected by
the long QT syndrome [14]. This often fatal cardiac arrhyth-
mia is characterised by a prolonged QT interval in the
electrocardiogram. Other forms of this syndrome are caused
by mutations in SCN5A (a cardiac Na+-channel), HERG
(another K+-channel expressed in heart), or KCNE1 (a K+-
channel β subunit also called minK or IsK). Recently, the
related protein KCNE2 (or MiRP1) was shown to associate
with HERG channels. Mutations in its gene were identified
in cardiac arrhythmia patients [18]. KCNE1, a small protein
with a single transmembrane domain, associates with
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KCNQ1 (which is the pore-forming subunit and has six
transmembrane domains) to form the slowly activating
K+-current IKs found in the myocard. Depending on the
severity of the functional defect, mutations in these sub-
units lead to different diseases: dominant-negative
mutations, which decrease the activity of the tetrameric
channel down to approximately 10%, are sufficient to cause
cardiac arrhythmias in heterozygous patients. A total loss of
function, as is found in patients homozygous for recessive
mutations, additionally results in congenital deafness. This
is due to a defect in K+-secretion into the scala media of the
inner ear. Thus, the repolarization of cardiac action poten-
tials is more sensitive to a decrease in channel function than
is the transepithelial transport in the cochlea [19].

KCNQ2 and KCNQ3 are neuron-specific isoforms that are
co-expressed in broad regions of the nervous system. They
assemble to form heteromeric channels that have properties
of the M-type K+ current [8••,9•,20]. This highly regulated
current is active near the threshold of action potential firing
and is an important determinant of neuronal excitability.

Mutations in either subunit can cause benign familial
neonatal convulsions (BFNC) [15–17], a transient, gener-
alised epilepsy of infancy. In contrast to the KCNQ1
mutations that result in the long QT syndrome, a slight loss
of KCNQ2/KCNQ3 function is sufficient to cause epilepsy
[9•]. Expression studies in Xenopus oocytes indicate that the
mutations that cause BFNC lead to a 20–30% loss of K+

channel function in patients [9•]. One may assume that a
more severe loss of function could lead to more severe
symptoms, possibly resulting in early lethality. Indeed,
none of the KCNQ2 or KCNQ3 mutations identified so far
exerts a dominant-negative effect on wild-type subunits.

Mutations in KCNQ4 cause a form of slowly progressive
dominant deafness (DFNA2) [4••]. Functional analysis
indicated a dominant-negative effect on co-expressed
wild-type subunits [4••]. This is also the case for other
KCNQ4 missense mutations (T Friedrich, T Jentsch,
unpublished data) that were reported later [21]. However,
one mutation found in DFNA2 [21] leads to an early
frameshift, predicting a lack of a dominant-negative effect.
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Table 1

Ion channels mutated in human neuromuscular diseases.

Ion channel subunit Gene Disease Refererence

Na+-channel α SCN4A Paramyotonia congenita [58–60]
Hyperkalemic periodic paralysis
Hypokalemic periodic paralysis

SCN5A Long QT type 3 (cardiac arrhythmia) [61,62]

Na+-channel β SCN1B Generalized epilepsy with febrile seizures type 1 [32]

K+-channel α KCNA1 Episodic ataxia type 1 [23]
KCNQ1 Long QT type 3 (cardiac arrhythmia) [14]

Jervell-Lange-Nielson (cardiac arrhythmia and deafness)
KCNQ2/3 Benign familial neonatal convulsions [15–17]
KCNQ4 Hereditary hearing loss (DFNA2) [4••]
HERG Long QT type 2 (cardiac arrhythmia) [63]

K+-channel β KCNE1 Long QT type 5 (cardiac arrhythmia) [64]
Jervell-Lange-Nielson (cardiac arrhythmia and deafness)

KCNE2 Cardiac arrhythmia [18]

Ca2+-channel α CACNA1A Episodic ataxia type 2 [34,39]
Familial hemiplegic migraine
Spinocerebellar ataxia type 6

CACNA1S Hypokalemic periodic paralysis [46]
CACNA1F Congenital stationary night blindness type 2 [47,48]

RYR1 Malignant hyperthermia [65,66]
Central core disease

ClC Cl– channels CLCN1 Myotonia congenita (dominant and recessive) [50]

Glycine receptor channel GLRA1 Hyperekplexia [51]

ACh receptor channel CHRNA1 Congenital myasthenia [67]
CHRNA4 Autosomal dominant nocturnal frontal lobe epilepsy [53]

Connexins GJB1 (Cx32) Charcot-Marie-Tooth disease [68,69]
GJB2 (Cx26) Hereditary hearing loss (DFNA3 and DFNB1) [70,71]
GJB3 (Cx31) Hereditary hearing loss (DFNA2) [2]
GJB6 (Cx30) Hereditary hearing loss (DFNA3) [7]

Although the table lists only ion channel defects associated with
neuromuscular disorders, many more channelopathies are known, for
example those associated with renal ion channels (Bartter's syndrome)

and ion channels of secretory epithelia (cystic fibrosis). The table has a
wider focus than has the main text — readers are referred to the listed
references for further information.



Interestingly, the deafness in these patients does not seem
to be much less severe. It is currently unclear how muta-
tions in KCNQ4 cause deafness. It has been suggested
that a partial loss of KCNQ4 function leads to the degen-
eration of sensory outer hair cells. This is the only cochlear
cell type that expresses KCNQ4 [4••].

Mutations of the KCNA1 K++-channel
Among the numerous other K+-channels found in the CNS,
KCNA1 (Kv1.1) is the only other one known to be mutated
in human CNS disease. It is highly expressed in cerebellar
basket cells and in myelinated peripheral nerves, and can
form heteromers with Kv1.2 [22]. This delayed-rectifier
channel contributes to the repolarization of action poten-
tials. Mutations in KCNA1 affect the motor system and
cause a dominant form of episodic ataxia (EA-1) that is
accompanied by myokymia (spontaneous discharges of
peripheral motoneurons) [23]. In some families, epileptic
seizures have also been observed [24]. These, however, did
not affect all patients carrying the mutation, indicating a
low penetrance. Seizures were also observed in a mouse
model with a total knock-out of the kcna1 gene [25]. 

Functional studies have revealed various effects of the
KCNA1 mutations that have been identified in patients
with EA-1. Some mutations cause a shift of the voltage
dependence of activation to positive voltages, while others
change the kinetics of gating and inactivation [26–28]. In
the cases where this was addressed experimentally, similar
but less pronounced changes in the biophysical properties

were also found for wild-type/mutant heteromeric chan-
nels that would be formed in heterozygous patients with
this dominant disease. This influence on the heteromer
can be regarded as a dominant-negative effect of the
mutated subunits. Similar studies were performed on
Kv1.1/Kv1.2 heteromers carrying just one mutant Kv1.1
subunit [29•]. However, non-functional and non-interact-
ing KCNA1 subunits may also be found in EA-1,
suggesting that the loss of function associated with hap-
loinsufficiency suffices to cause this syndrome [27]. 

Mutations of voltage-gated Na++-channels
Voltage-gated Na+-channels are required to generate the
electrical excitation in neurons, heart and skeletal muscle
fibres, which express tissue-specific isoforms. These chan-
nels are heteromers of a pore-forming α-subunit and a
modulatory β1-subunit, with an additional β2-subunit in
neuronal channels. Mutations in the α-subunit of the
skeletal muscle isoform (SCN4A) were identified in
paramyotonia congenita and hyperkalemic periodic para-
lyis, and mutations in the heart isoform (SCN5A) are seen
in a form of the long QT syndrome (reviewed in [12]).
These missense mutations lead to additional, ‘late’
Na+-currents by affecting the inactivation process, which
in turn leads to a slight depolarization of the membrane
resulting in hyperexcitability. Because a small fraction of
non-inactivating mutant channels suffices to produce this
effect, a dominant mode of inheritance is observed. One of
the neuronal isoforms (scn8a) is mutated in the med and
jolting mouse models [30,31]. 
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Table 2

Residual channel function in potassium channelopathies.

Gene Site of expression Mode of inheritance Disease Remaining function

KCNQ1 Heart, cochlea Dominant LQT1 ~10%
Other tissue (Romano-Ward) Dominant negative on one allele

Recessive LQT1 None
(Jervell-Lange-Nielson) Loss of both alleles

KCNQ2 Brain Dominant BFNC ~75% (in the heteromer)

KCNQ3 Loss of function on one allele

KCNQ4 Cochlea, brain Dominant DFNA2 10–15%
Other tissues Dominant negative on one

allele or haploinsufficiency

KCNA1 Brain, PNS Dominant EA-1 10–15%
Dominant negative on one
allele or haploinsufficiency

The level to which K+-currents need to be decreased in order to cause
disease differs broadly between the different K+-channel diseases.
Since these potassium channels are tetramers, certain mutations can
have strong dominant negative effects. For instance, the incorporation
of a single mutated subunit into the tetrameric channel may totally
abolish channel function. In this case, only channels consisting entirely
of wild-type subunits will yield current. In heterozygous patients carrying
such a dominant-negative mutation on one allele, the abundance of
functional channels consisting entirely of wild-type subunits will be only
1/16 of normal. Such strong dominant negative mutations (which result,

for example, from missense mutations in the pore) are found in the
dominant long QT syndrome or in DFNA2. Interestingly, this level of
channel activity is still sufficient for inner ear function; here, the current
flowing through KCNQ1/KCNE1 has to be reduced further (by a loss of
genes encoding the channels on both alleles) to cause deafness. By
contrast, normal levels of KCNQ2/KCNQ3 heteromers need to be
decreased only slightly to cause the neonatal epilepsy BFNC. It should
be remembered, however, that all results reported in this table were
obtained in heterologous expression systems and not in native tissue.
PNS, peripheral nervous system.



Recently, a mutation in a neuronal β-subunit (SCN1B) was
found in a large family with generalised epilepsy and febrile
seizures (GEFS+) [32]. Functional analysis demonstrated a
loss of function of this accessory subunit, resulting in a slower
inactivation of the Na+-channel complex. In a manner some-
what similar to gain of function mutations in SCN4A and
SCN5A, the resulting late Na+-currents may lead to a hyper-
excitability of neurons, which, in turn, will result in seizures.

Mutations of voltage gated Ca22++-channels
Voltage-dependent Ca2+-channels are composed of a single
pore-forming α-subunit (of which different isoforms exist)
and several accessory subunits (for a review, see [33]).
Three different human neurological diseases are attribut-
able to mutations in the CACNA1A gene. (The reader
should note that the Ca2+-channel α-subunits have recent-
ly been renamed. Thus, CACNL1A3 is now CACNA1S,
and CACNL1A4 is CACNA1A.) This gene encodes one of
several neuronal α-subunit isoforms. In addition to other
regions of the brain, the gene is predominantly expressed
in Purkinje and granule cells of the cerebellum. 

Truncations, which presumably lead to a total loss of chan-
nel function, cause episodic ataxia type 2 (EA-2) [34,35].
Several missense mutations have been identified in patients
with familial hemiplegic migraine (FHM), a particularly
severe form of migraine [34]. Electrophysiological analysis
of the mutant channels found in FHM in heterologous
expression systems revealed that they still function as Ca2+-
channels, but have altered properties [36,37]. However, the
picture is complex, as both a gain of function (e.g. a shift of
the voltage-dependence to less depolarised potentials) and
a loss of function (e.g. lower single-channel conductance)
was described. It is currently unclear how these different
changes in channel function lead to migraine. 

Interestingly, another CACNA1A mutation (G583A) has
recently been identified in a family presenting with both
migraine and ataxia [38]. One may speculate that a more
severe loss of channel function than that causing FHM
may explain the phenotype. Unfortunately, the biophysical
effect of this mutation has not yet been studied. 

The third human disease attributable to a CACNA1A muta-
tion is spinocerebellar ataxia type 6 (SCA-6). This is
caused by an expansion of CAG repeats within the open
reading frame [39]. It is likely that SCA-6, like other triplet
repeat diseases, is caused by a ‘toxic’ effect of the expand-
ed polyglutamine stretch at the carboxy-terminus of the
channel encoded by the CAG repeat. Indeed, it was shown
recently that this expansion results in intracellular aggre-
gation of the mutated protein both in cultured cells and in
the cerebellum of patients [40•]. These aggregates eventu-
ally lead to apoptosis in cultured cells. This may account
for the neurodegeneration seen in vivo. 

A missense and a truncating mutation in the cacna1a gene
lead to absence seizures and ataxia in tottering and leaner

mice, respectively [41]. Thus, the murine phenotype, which
exhibits epileptic seizures even before the onset of ataxia, is
not a mirror-image of the human diseases. Several other
genetic forms of mouse epilepsy have been shown to be
caused by mutations of the accessory subunits of Ca2+-chan-
nels [42]. The lethargic mouse, which also displays seizures
and ataxia, has a mutation in the β4 subunit [43]. This dis-
rupts its association with the α1-subunit, and may result in
the formation of different α–β pairs by favouring the associ-
ation of α1 with the β1, β2 and β3 subunits [44]. The absence
epilepsy in stargazer mice is attributable to a mutation in the
γ-subunit [45]. This subunit is not present in all Ca2+-chan-
nels in vivo, and its functional role is currently unclear [33].

To date, no human neurological disease is known to be
caused by a mutation in an accessory subunit of a Ca2+-chan-
nel. However, there are other diseases that result from
mutations in α-subunits. Mutations in CACNA1S cause
hypokalemic periodic paralysis, a muscle disease [46].
Mutations in CACNA1F, which encodes the retina-specific α-
subunit α1F, cause incomplete X-linked congenital stationary
night blindness (CSNB2) [47,48]. This disorder apparently
results from the complete loss of function of the L-type chan-
nel, which is involved in retinal neurotransmission.

Ion channels, neuronal excitability and epilepsy
Epilepsy is one of the most common neurological disorders
and affects roughly 1% of the population. It is character-
ized by synchronised, pathological electrical activity of
large groups of neurons: this electrical hyperactivity leads
to epileptic seizures. In some forms of epilepsy, abnormal
electrical brain activity can also be recorded in symptom-
free intervals between seizures. 

Epilepsy has a large genetic component, which has been
estimated to be about 50%. Most forms of genetic epilepsy
are probably polygenic. Progress in identifying the under-
lying genes has been limited to rare, monogenic forms of
epilepsy, which are easier to investigate. Since the electri-
cal hyperactivity that causes epilepsy is directly created by
currents flowing through ion channels, the genes encoding
such channels constitute promising candidate genes for the
cause of epilepsy. Therefore, it is not unexpected that
mutations in ion-channel genes underlie some forms of
epilepsy in humans and mice. In fact, given the large num-
ber of ion channel genes, it is surprising that only four such
genes have so far been implicated in human epilepsy .

Considering only loss-of-function mutations, K+-channel and
Cl–-channel mutations are the best candidates for the cause
of epilepsy, as these channels normally dampen the excitabil-
ity of neurons. Thus, their elimination could lead to a
cell-autonomous hyperexcitability. However, given the com-
plex circuitry of the CNS, the loss of channels that directly
excite (i.e. depolarise) neurons (such as Na+-channels, and
glutamate- and acetylcholine-receptor channels) could also
lead to a hyperexcitability of downstream neurons, if they are
normally inhibited by the affected upstream neurons.
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It is surprising that mutations in only a few types of K+-chan-
nel subunit are known to cause human epilepsy. These are
the subunits KCNQ2 and KCNQ3, which together form
heteromeric channels [15–17]. Additionally, in some families
KCNA1 mutations cause epilepsy as well as ataxia [24].
Results from investigations of properties such as the kinetics
and the drug-sensitivity of currents through
KCNQ2/KCNQ3 heteromer channels have, satisfyingly, cor-
roborated the suggestion that these heteromers provide the
molecular basis for M-type potassium currents [8••]. These
currents have been studied for 20 years and are known to be
important regulators of neuronal excitability. They are nega-
tively regulated by several neurotransmitters: this regulation
includes inhibition by muscarinic M1 receptors, a feature
now known to be shared by KCNQ1 through KCNQ4 [49].
The M-current is slowly activated by depolarization, and the
channels through which it flows are already open at the
slightly depolarised voltages near the threshold for action
potential generation. The regulation of M-currents by 
several neurotransmitters thereby allows for a sensitive con-
trol of repetitive action-potential firing. The high sensitivity
of this control probably explains the fact that a small
(20–30%) loss of KCNQ2/KCNQ3 current suffices to cause
neonatal epilepsy [9•]. The observation that seizures nor-
mally disappear after several weeks points to the complex
and developmentally regulated interplay between different
ionic conductances and neuronal circuits, making it difficult
to predict the effects of single ion-channel defects.

So far, no human epilepsy is known to be caused by
Cl–-channel mutations. In skeletal muscle, the ClC-1
Cl–-channel plays a prominent role in dampening electrical
excitation: mutations in its gene are known to cause myoto-
nia [50]. In contrast, voltage-gated Cl–-channels are
probably less important in the brain. However, mutations in
the glycine-receptor Cl–-channel lead to startle disease
(hyperekplexia) [51]. While disruption of some GABAA
receptor Cl–-channel subunits in mice causes severe epilep-
sy in addition to other symptoms [52], no GABAA receptor
mutations have been identified in human epilepsy.

Mutations in the α4-subunit of the nicotinic acetyl-
choline receptor cause another rare form of idiopathic
epilepsy — autosomal dominant nocturnal frontal lobe
epilepsy (ADNFLE) [53,54]. Only a few families with
mutations in this receptor have been identified. These
mutations do not lead to a total loss of function, but
rather alter the properties of the channel in different
ways [55–57]. It is currently unclear how, and in which
neurons, the mutated receptors initiate epileptic activity.
The same is true for GEFS+. Here, however, the func-
tional loss of a β-subunit of voltage-gated Na+-channels
suggests a cell-autonomous gain in excitability because
the channels now inactivate at a slower rate [32]. 

Conclusions
The number of ion channels implicated in human disease has
increased substantially over the past few years, and this trend

will surely continue. Although ion channel diseases often pro-
vide a direct pathophysiological explanation, the situation is
not always that simple. For instance, none of the Ca2+-chan-
nel genes involved in epilepsy in mice have been implicated
in human epilepsy [42]. This highlights the complexity of the
CNS and the difficulties in predicting effects of ion channel
mutations in an extended neuronal network. Further, one
should not forget that ion channels (and electrical activity in
general) can have significant effects on brain development.
Thus, it would be too simplistic to try to predict the effect of
an ion channel mutation just by taking into account its role in
the fully developed neuronal network (which is a daunting
task in itself). In contrast to channelopathies of the skeletal
muscle and the heart, it will take a long time to fully under-
stand the cause and the effect of the CNS channelopathies.

Update
Escayg and colleagues [72•] have identified two different
mutations in the voltage-sensor domains of a neuronal Na+-
channel α-subunit in patients with a rare form of
generalized epilepsy. This type of epilepsy has previously
been shown to be caused by mutations in the β-subunit of
the very same Na+-channel [32], and it was known that a
second locus for this inherited disease existed on chromo-
some 2q23-24. This work now finally shows that alterations
in either subunit of this channel may cause epilepsy.

Mutations in Ca2+-channel accessory subunits have been
known to cause neuronal disease phenotypes in mice, yet
so far no pathogenic mutations had been found in humans.
After screening 90 pedigrees with familial epilepsy or atax-
ia, the authors identified two different mutations, one
truncation and one missense mutation in the β4-subunit
gene in three kindreds [73]. The effects of the mutated
β subunit on Ca2+-channel function remain elusive, but the
mutations found are strong candidates for the cause of
epilepsy and ataxia in the affected pedigrees.
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